cho 3 số tự nhiên a,b,c thõa mẫn \(a^2+b^2=c^2\) chứng tỏ rằng \(abc⋮\) 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử cả 3 số a; b; c đều không chia hết cho 3
=> a; b; c chia cho 3 dư 0 hoặc 1
=> a2 ; b2 ; c2 chia cho 3 dư 1
=> a2 + b2 chia cho 3 dư 2. Mà c2 chia cho 3 dư 1 nên a2 + b2 khác c2 (trái với đề bài)
Vậy trong 3 số a; b; c có ít nhất 1 số chia hết cho 3
=> a.b.c chia hết cho 3
Ta luôn có 3ab chia hết cho 3
Vậy abc + 3ab chia hết cho 3
Làm sao để gửi câu hỏi lên vậy bạn?
Mình không biết làm thế nào cả
Giải:
Ta có: \(12=3.4\)
+) Nếu \(a,b,c\) \(⋮̸\) \(3\Rightarrow a^2,b^2,c^2\div3\) dư \(1\)
Khi đó \(a^2+b^2=BS3+2;c^2=BS3+1\) (vô lí)
\(\Rightarrow\left[{}\begin{matrix}a⋮3\\b⋮3\\c⋮3\end{matrix}\right.\)\(\Rightarrow abc⋮3\left(1\right)\)
+) Nếu \(a,b,c\) \(⋮̸\) \(4\Rightarrow a^2,b^2,c^2\div8\) dư \(1;4\)
Khi đó \(a^2+b^2\div8\) dư \(0;2;5;c^2\div5\) dư \(1;4\) (vô lí)
\(\Rightarrow\left[{}\begin{matrix}a⋮4\\b⋮4\\c⋮4\end{matrix}\right.\)\(\Rightarrow abc⋮4\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}abc⋮3\\abc⋮4\end{matrix}\right.\) Mà \(\left(3;4\right)=1\Rightarrow abc⋮12\)
Vậy nếu \(a^2+b^2=c^2\) thì \(abc⋮12\) (Đpcm)
Ta có : (a + b + c) \(⋮\)2
=> \(\left(a+b+c\right)^2⋮2\)
=> \(\left(a+b+c\right)\left(a+b+c\right)⋮2\)
=> \(\left(a+b+c\right).a+\left(a+b+c\right).b+\left(a+b+c\right).c\)
=> \(a^2+ab+ac+ab+b^2+bc+ac+bc+c^2\)
=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)⋮2\)
Vì \(2\left(ab+bc+ca\right)⋮2\)
=> \(a^2+b^2+c^2⋮2\left(\text{đpcm}\right)\)
Bài làm:
Ta có: Vì a+b+c chia hết cho 2
=> a+b+c chẵn
Nên ta xét các TH sau:
+Nếu: Cả 3 số a,b,c đều chẵn
=> a2,b2,c2 đều chẵn
=> a2+b2+c2 chia hết cho 2
+Nếu: Chỉ có 1 số trong 3 số a,b,c chẵn
G/s a là số chẵn, b và c là 2 số lẻ
=> a2 chẵn và b2,c2 lẻ
=> a2+b2+c2 chẵn
=> đpcm
Ta cần chứng minh rằng: p = (a − b) (a − c)(a − d) (b − c) (b − d) (c − d) chia hết cho 12.
Nhận xét rằng khi chia một số cho 3 thì số dư là một trong ba số 0, 1, 2. Xét tính chia hết của p với 3 và 4, riêng rẽ. Theo nguyên lý Dirichlet, tồn tại ít nhất hai số nguyên trong bốn số a, b, c, d cho cùng số dư khi chia cho 3.
Hiệu của những hai số này chia hết cho 3. Do đó, p chia hết cho 3. Nếu tồn tại hai trong bốn số nguyên a,b,c,d cho cùng số dư khi chia cho 4, thì p chia hết cho 4, theo cách lập luận như trên.
Nếu không, các số dư của a, b, c, d khi chia cho 4 sẽ khác nhau. Nhưng khi đó, hai trong bốn số cùng tính chẵn lẻ, cặp còn lại cũng cùng tính chẵn lẻ, thì hiệu của chúng đều chẵn. Tích của hai số chẵn chia hết cho 4. Do đó, p chia hết cho 4. Vậy, p chia hết cho 12.