K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

\(A=5+4^2+...+4^{2021}\\ A=4^0+4^1+...+4^{2021}\\ 4A=4^1+4^2+...+4^{2022}\\ 4A-A=\left(4^1+4^2+...+4^{2022}\right)-\left(4^0+4^1+...+4^{2021}\right)\\ 3A=4^{2022}-1\\ 3A+1=4^{2022}⋮4^{2021}\)

AH
Akai Haruma
Giáo viên
4 tháng 9 2023

Lời giải:
Đặt $A=1-2+2^2-2^3+2^4-2^5+2^6-....-2^{2021}+2^{2022}$

$A=1+(-2+2^2-2^3)+(2^4-2^5+2^6)+(-2^7+2^8-2^9)+...+(2^{2020}-2^{2021}+2^{2022})$

$A=1+(-2+2^2-2^3)+2^3(2-2^2+2^3)+2^6(-2+2^2-2^3)+....+2^{2019}(2-2^2+2^3)$

$=1+(-6)+2^3.6+2^6(-6)+....+2^{2019}.6$

$=1+6(-1+2^3-2^6+...+2^{2019})$

Suy ra $A$ chia $6$ dư $1$/

4 tháng 11 2023

\(C=4+4^2+4^3+...+4^{2021}+4^{2022}\)

\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2021}+4^{2022}\right)\)

\(=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{2021}.\left(1+4\right)\)

\(=4.5+4^3.5+...+4^{2021}.5\)

\(=5.\left(4+4^3+...+4^{2021}\right)⋮5\)

Vậy \(C⋮5\)

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Lời giải:
$A-1=4+4^2+4^3+...+4^{2020}+4^{2021}$
$4(A-1)=4^2+4^3+4^4+....+4^{2021}+4^{2022}$

$\Rightarrow 4(A-1)-(A-1)=4^{2022}-4$

$3(A-1)=4^{2022}-4$

$\Rightarrow 3A+1=4^{2022}\vdots 4^{2021}$ 

 

12 tháng 11 2021

Chứng minh rằng: A = 3^2 + 3^3 + 3^4 + 3^5 + … + 3^2020 + 3^2021 chia hết cho 36 - Hoc24

12 tháng 11 2021

\(A=\left(3^2+3^3\right)+3^2\left(3^2+3^3\right)+...+3^{2018}\left(3^2+3^3\right)\)

\(=36+3^2.36+...+3^{2018}.36=36\left(1+3^2+...+3^{2018}\right)⋮36\)

12 tháng 11 2021

\(A=\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{2020}+3^{2021}\right)\\ A=\left(3^2+3^3\right)+3^2\left(3^2+3^3\right)+...+3^{2018}\left(3^2+3^3\right)\\ A=\left(3^2+3^3\right)\left(1+3^2+...+3^{2018}\right)\\ A=36\left(1+3^2+...+3^{2018}\right)⋮36\)

12 tháng 11 2021

Anh là ân nhân cứu mạng của em :33