tìm m để hệ có nghiệm:
\(\hept{\begin{cases}3x^2+2xy+y^2=11\\x^2+2xy+3y^2=17+m\end{cases}}\)
giup mk nha mk tick cho. mk dag can gap
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(I\right)\begin{cases}3x^2+2xy+y^2=11\\x^2+2xy+3y^2=17\end{cases}\)
Ta thấy x=0 không thỏa mãn hệ (I).Đặt y=tx ta đc
\(\left(II\right)\begin{cases}x^2\left(3+2t+t^2\right)=11\left(1\right)\\x^2\left(1+2t+3t^2\right)=17\left(2\right)\end{cases}\)
Suy ra \(\frac{1+2t+3t^2}{3+2t+t^2}=\frac{17}{11}\Leftrightarrow4t^2-3t-10=0\Leftrightarrow\left[\begin{array}{nghiempt}t=2\\t=-\frac{5}{4}\end{array}\right.\)
Vậy hệ (I) có bốn nghiệm là: \(\left(x;y\right)=\left(1;2\right),\left(-1;-2\right),\left(\frac{4}{\sqrt{3}};-\frac{5}{\sqrt{3}}\right),\left(-\frac{4}{\sqrt{3}};\frac{5}{\sqrt{3}}\right)\)
\(\hept{\begin{cases}2x+2y=10-2xy\\x^2+y^2=5\end{cases}}\)
\(\Rightarrow x^2+y^2-10+2xy=5-2\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x+y\right)-10=5-2\left(x+y\right)\)
\(\text{Đặt: x+y=a}\)
\(a^2-10=5-2a\Rightarrow a^2-10-5+2a=0\Rightarrow a^2+2a-15=0\)
\(\)\(\Leftrightarrow a^2+2a+1=16\Leftrightarrow a+1=\pm4\Leftrightarrow\orbr{\begin{cases}a=-5\\a=3\end{cases}}\)
\(+,a=-5\Rightarrow x+y=-5\)
\(\Rightarrow xy=10\Rightarrow x^2+y^2+10-2xy=0\Rightarrow\left(x-y\right)^2=-10\left(\text{loại}\right)\)
\(+,a=3\Rightarrow x+y=3\Rightarrow xy=2\)
\(\Rightarrow x^2+y^2+10-2xy=11\Rightarrow\left(x-y\right)\left(x-y\right)=1\Rightarrow x-y=\pm1\)
\(\text{Giả sử: x ít nhất bằng y}\)
\(\Rightarrow x-y=1\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
\(y\ge x\Rightarrow\hept{\begin{cases}y=2\\x=1\end{cases}}\)
đến đây thì ez rồi
2 \(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)
ĐK \(x,y\ne0\)
Từ \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)
+ thay \(x=y\)vào (2) ta dc ..................
+xy=1 suy ra 1=1/y thay vao 2 ta dc............