Cho hình chóp S.ABCD có ABCD là hình vuông, SA vuông góc với ABCD a) Chúng minh CD vuông góc SD b) Xác định góc tạo bởi SA và (ABCD)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
⇒ (SCD) ⊥ (SAD)
Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).
Vậy (SBC) ⊥ (SAC).
b) Ta có:
c)
Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và .
Tam giác SDI có diện tích:
a: CD vuông góc AD
CD vuông góc SA
=>CD vuông góc (SAD)
=>(SAD) vuông góc (SCD)
b: (SCD) giao (ABCD)=CD
CD vuông góc (SAD)
=>CD vuông góc SD
CD vuông góc SD
AD vuông góc CD
mà SD thuộc (SCD) và AD thuộc (ABCD)
nên ((SCD);(ABCD))=(SD;AD)=góc SDA
tan SDA=SA/AD=căn 3/2
=>góc SDA=41 độ
a: (SBD) giao (ABCD)=BD
AB vuông góc BD
SB vuông góc BD
=>góc cần tìm là góc SBA
Đáp án A
Ta có: B là hình chiếu của B lên (ABCD)
A là hình chiếu của S lên (ABCD)
Suy ra góc tạo bởi (ABCD) là góc φ = S B A ^ .
a.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\\AB\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)
b.
Từ câu a ta có \(AB\perp\left(SAD\right)\)
Mà \(SD\in\left(SAD\right)\)
\(\Rightarrow AB\perp SD\)
a: DC vuông góc AD
DC vuông góc SA
=>DC vuông góc (SAD)
b: (SD;(ABCD))=(DS;DA)=góc SDA
tan SDA=SA/AD=căn 3
=>góc SDA=60 độ