Cho tam giác ABC cân tại A nội tiếp (O).Gọi D là một điểm trên BC,tia AD cắt (O) ở E.Chứng minh a)AB^2=AD.AE. b)AB là tiếp tuyến của đường tròn ngoại tiếp tam giác BED GIÚP EM CÂU B VỚI Ạ, EM CẢM ƠN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\widehat{AEB}=\dfrac{1}{2}sđ\stackrel\frown{AB};\widehat{ABC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\)
Mà \(\Delta ABC\) cân tại \(A\) nên \(AB=AC\Rightarrow\stackrel\frown{AB}=\stackrel\frown{AC}\)
\(\Rightarrow\widehat{AEB}=\widehat{ABC}\\ \Rightarrow\Delta ABE\sim\Delta ADB\left(g.g\right)\\ \Rightarrow\dfrac{AB}{AD}=\dfrac{AE}{AB}\Rightarrow AB^2=AE\cdot AD\)
\(b,\widehat{AEB}=\widehat{ABC}\) nên AB là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ABC\)
a: Xét ΔADB và ΔABE có
\(\widehat{BAE}\) chung
\(\widehat{ABD}=\widehat{AEB}\)
Do đó: ΔADB\(\sim\)ΔABE
Suy ra: \(AB^2=AD\cdot AE\)
c) *MOHD nội tiếp (cmb) \(\Rightarrow\)^DHB = ^DOM Mà ^DHM +^BHD=180 và ^DOM +^EOD =180 => ^EOD = ^BHD
Mặt khác, ^EOD =^BQD (OM // BQ) => ^BHD = ^BQD => BHQD nội tiếp.
=>đpcm
d) Kéo dài BQ cắt AC tại J
Cm Q là trung điểm BJ (đường trung bình)
Cm \(\frac{EO}{BQ}\)\(=\)\(\frac{OF}{QJ}\)(\(=\)\(\frac{AO}{AQ}\)) \(\Rightarrow\)Đpcm