Tìm x,y
\(\frac{x}{7}\)=\(\frac{9}{7}\)và x>y (x,y thuộc Z)
\(\frac{x-4}{y-3}\)=\(\frac{4}{3}\)và x-y=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\)và x.y=48
xét \(\frac{x}{3}=\frac{y}{4}\)
đặt K vào \(\frac{x}{3}=\frac{y}{4}\)
ta có
\(\frac{x}{3}=K\Rightarrow x=3K\)
\(\frac{y}{4}=K\Rightarrow y=4K\)
\(x.y=48\)
\(3K.4K=48\)
\(12K^2=48\)
\(K^2=48:12=4\)
\(K^2=2^2\Rightarrow K=2\)
*\(\frac{x}{3}=2\Rightarrow x=2.3=6\)
*\(\frac{y}{4}=2\Rightarrow y=2.4=8\)
*\(\frac{z}{7}=2\Rightarrow z=2.7=14\)
vậy \(x=6;y=8;z=14\)
dat \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}=k\) => x=3k,y=4k,z=7k
Thay vvao ta dc: x.y=48
3k.4k=48
12.\(k^2\)=48
k^2=4
k=4,-4
TH1: k=a
=> x=3k=>x=12
y va z lam tuong tu nhe
Con TH2 la -4
k cho m nha
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\)
\(\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{12}\)
\(\Leftrightarrow\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(\Rightarrow x=52;y=63;z=36\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{7}=\frac{z}{4}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{14}=\frac{y}{21}\\\frac{y}{21}=\frac{z}{12}\end{cases}\Rightarrow}\frac{x}{14}=\frac{y}{21}=\frac{z}{12}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.14=42\\y=3.21=63\\z=3.12=36\end{cases}}\)
Theo tính chất dãy tỉ số bằng nhau thì:
\(\frac{x+2}{7}=\frac{y-3}{5}=\frac{z}{3}=\frac{\left(x+2\right)+\left(y-3\right)-x}{7+5-3}=\frac{x+y-z-1}{9}=\frac{-17-1}{9}=-2\)
=> \(\frac{x+2}{7}=-2\Rightarrow x=\left(-2\right).7-2=-16\)
\(\frac{y-3}{5}=-2\Rightarrow y=\left(-2\right).5+3=-7\)
\(\frac{z}{3}=-2\Rightarrow z=\left(-2\right).3=-6\)
thưa cô theo em nghĩ thì phải là
\(\frac{x+2}{7}=\frac{y-3}{5}=\frac{z}{3}=\frac{\left(x+2\right)+\left(y-3\right)-z}{7+5-3}\) chứ ạ cô nhầm thì phải ạ
a. \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)
\(xy=54\Rightarrow2k3k=54\Rightarrow6k^2=54\Rightarrow k^2=9\Rightarrow k\in\left\{3;-3\right\}\)
\(k=3\Rightarrow x=6;y=9\)
\(k=-3\Rightarrow x=-6;y=-9\)
b.\(\frac{x}{5}=\frac{y}{3}=k\Rightarrow x=5k;y=3k\)
\(\Rightarrow\left(5k\right)^2-\left(3k\right)^2=4\Rightarrow25k^2-9k^2=4\)
\(\Rightarrow16k^2=4\Rightarrow k^2=\frac{1}{4}\Rightarrow k\in\left\{\frac{1}{2};-\frac{1}{2}\right\}\)
\(k=\frac{1}{2}\Rightarrow x=\frac{5}{2};y=\frac{3}{2}\)
\(k=-\frac{1}{2}\Rightarrow x=\frac{-5}{2};y=\frac{-3}{2}\)
c.\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2}.\frac{1}{5}=\frac{y}{3}.\frac{1}{5}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}.\frac{1}{3}=\frac{z}{7}.\frac{1}{3}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow x=20,y=30,z=42\)
d.\(\frac{x^2}{9}=\frac{y^2}{16}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
\(\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\};y^2=64\Rightarrow y\in\left\{8;-8\right\}\)
a)Mk ko hiểu làm gì có y đâu
b)Ta có:\(\frac{x-4}{y-3}=\frac{4}{3}\)
\(\Rightarrow3x-12=4y-12\)
\(\Rightarrow3x-4y=0\)
Mà \(x-y=5\Rightarrow x=5+y\)
Do đó:\(3\left(5+y\right)-4y=0\)
\(\Rightarrow15+3y-4y=0\)
\(\Rightarrow15-y=0\)
\(\Rightarrow y=15\)
Do đó:x=20
a) \(\frac{x}{7}=\frac{9}{7}\Rightarrow x=9\)
b) \(\frac{x-4}{y-3}=\frac{4}{3}\Rightarrow3\left(x-4\right)=4\left(y-3\right)\)
\(\Rightarrow3x-12=4y-12\)
\(\Rightarrow3x=4y\)
\(\Rightarrow3x=3y+y\)
\(\Rightarrow3x-3y=y\)
\(\Rightarrow3\left(x-y\right)=y\)
\(\Rightarrow3.5=y\)
\(\Rightarrow y=15\)
\(\Rightarrow x-15=5\)
\(\Rightarrow x=5+15\)
\(\Rightarrow x=20\)
Vậy \(y=15,x=20\)