Tìm n thuộc N để B= \(\frac{7n-8}{2n-3}\) đạt giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Ta có: \(\frac{7n-8}{2n-3}\)= \(\frac{7}{2}\).\(\frac{2}{7}\).\(\frac{7n-8}{2n-3}\)=\(\frac{7}{2}\).\(\frac{14n-16}{14n-21}\)
=\(\frac{7}{2}\).\(\frac{14n-21+5}{14n-21}\)=\(\frac{7}{2}\).(1 +\(\frac{5}{14n-21}\))
=\(\frac{7}{2}\)+\(\frac{5}{4n-6}\)
*Để phân số đó có GTLN thì \(\frac{5}{4n-6}\)có GTLN.
=>4n-6 phải lớn hơn 0 và có GTNN.
*Nếu 4n -6 = 1 thì n =\(\frac{7}{4}\)
( ko thỏa mãn x thuộc N)
*Nếu 4n - 6 = 2 thì n = 2 ( thỏa mãn)
Vậy n = 2 thì phân số \(\frac{7n-8}{2n-3}\)có GTLN.
Để\(\frac{7n-8}{2n-3}\) đạt giá trị lớn nhất
=>2n-3 là số nguyên dương bé nhất
=>2n-3=1
2n=4
n=2
k nha
Đặt \(A=\frac{7n-8}{2n-3}\) ta có :
\(A=\frac{7n-8}{2n-3}=\frac{7}{2}.\frac{2\left(7n-8\right)}{7\left(2n-3\right)}=\frac{7}{2}.\frac{14n-16}{14n-21}=\frac{7}{2}.\left(\frac{14n-21}{14n-21}+\frac{5}{14n-21}\right)\)
\(A=\frac{7}{2}.\left(1+\frac{5}{14n-21}\right)=\frac{7}{2}+\frac{7.5}{2\left(14n-21\right)}=\frac{7}{2}+\frac{7.5}{7\left(4n-6\right)}=\frac{7}{2}+\frac{5}{4n-6}\)
Để A đạt GTLN thì \(\frac{5}{4n-6}\) phải đạt GTLN hay \(4n-6>0\) và đạt GTNN
\(\Rightarrow\)\(4n-6=1\)
\(\Rightarrow\)\(4n=7\)
\(\Rightarrow\)\(n=\frac{7}{4}\) ( loại vì n là số tự nhiên )
Do đó : \(4n-6=2\)
\(\Rightarrow\)\(4n=8\)
\(\Rightarrow\)\(n=2\)
Suy ra :
\(A=\frac{7n-8}{2n-3}=\frac{7.2-8}{2.2-3}=\frac{14-8}{4-3}=\frac{6}{1}=6\)
Vậy \(A_{max}=6\) khi \(n=2\)
Chúc bạn học tốt ~
a, \(\frac{4n+1}{2n-3}=\frac{2n-3+2n+4}{2x-3}\)
= \(\frac{2n-3}{2n-3}+\frac{2n+4}{2n-3}\) = \(1+\frac{2n-3+7}{2n-3}=1+\frac{7}{2n-3}\)
để B tối giản thì 7 phải chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(7)
=> 2n - 3 = { 1 , -1 , 7 , -7 }
=> 2n = { 4 , 2 , 10 , -4 }
=> n ={ 2 , 1 ,5 ,-2 }
Đừng bỏ cuộc
Ta có :
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A nguyên thì \(\frac{13}{2n+3}\in Z\)
\(\Rightarrow2n+3\in\left\{-13;-1;1;13\right\}\)
\(\Rightarrow2n\in\left\{-16;-4;-2;10\right\}\)
\(\Rightarrow n\in\left\{-8;-2;-1;5\right\}\)
b. Bổ sung điều kiện : A thuộc Z
Để \(A_{max}\) thì \(\frac{13}{2n+3}_{min}\)
\(\Leftrightarrow2n+3_{max}\in Z^-\)
Mà \(A\in Z\Leftrightarrow2n+3=-13\) hoặc \(2n+3=-1\)
\(\Rightarrow A_{max}=3-\frac{13}{-1}=16\Leftrightarrow n=-2\left(tm:n\in Z\right)\)
Vậy Amax = 16 <=> n = -2
\(B=\frac{7n-8}{2n-3}=\frac{2\left(7n-8\right)}{2\left(2n-3\right)}=\frac{7\left(2n-3\right)+5}{2\left(2n-3\right)}=\frac{7}{2}+\frac{5}{4n-6}\)
Để \(\frac{7}{2}+\frac{5}{4n-6}\) đạt GTLN <=> \(4n-6\) đạt GTNN
Đặt \(4n-6=k\) (k thuộc N)
\(\Rightarrow n=\frac{k+6}{4}\)
Vì n thuộc N ; nhỏ nhất => k = 2
=> n = 2
=> \(B_{max}=6\) tại n = 2
:Ta có"
\(\frac{7n-8}{2n-3}=\frac{3.\left(2n-3\right)+n+1}{2n-3}=3+\frac{n+1}{2n-3}\)
Vậy để B lớn nhất thì \(\frac{n+1}{2n-3}\)lớn nhất hay (2n-3) nhỏ nhất hay n nhỏ nhất
Ta có: Nếu n<2 thì (2n-3)<0
Nếu n\(\ge\)2 thì (2n-3)>0
Vì n nhỏ nhất, n là số tự nhiên và n\(\ge\)2
=> n=2
Vậy để B đạt giá trị lớn nhất thì n=2