D=1/2.5+1/5.8+1/8.11+...+1/1979.1982
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{1979.1982} \)
\(=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{1979.1982}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{1979}-\frac{1}{1982}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{1982}\right)\)
\(=\frac{165}{991}\)
tham khảo ở đây nha
https://olm.vn/hoi-dap/detail/222956295982.html
\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{150}-\dfrac{1}{153}\right)\)
\(=\dfrac{1}{3}.\dfrac{151}{306}=\dfrac{151}{918}\)
=1/3.3(1/2.5-1/5.8-1/8.11-...-1/302.305)
=1/3.(3/2.5-3/5.8-3/8.11-...-3/302.305)
=1/3(1/2-1/5-1/5-1/8-1/8-1/11-...-1/302-1/305)
=1/3[(1/2-1/305)+(1/5-1/5)+...+(1/302-1/302)
=1/3*(1/2-1/305)=1/3*(305/610-1/610)=1/3*304/610=152/915
hình như mình làm sai hoặc sai đề , sao số lớn ghê
1/2.5+1/5.8+1/8.11+...+1/29.32 (khoảng cách từ 2-5;5-8;8-11;...;29-32 là 3) suy ra
=1/3(1/2-1/5+1/5-1/8+1/8-1/11+...+1/29-1/32) (-1/5+1/5;-1/8+1/8;-1/11+1/11=0) suy ra =1/3(1/2-1/32)=1/3.15/32=5/32
1/2.5+1/5.8+1/8.9+............+1/29.32
=1/2-1/5+1/5-1/8+...............+1/29-1/32
=1/2-1/32
=15/32
ai tích mk=>mk tích lại
\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{296.299}\)
=\(\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.7}+\frac{3}{7.11}+...+\frac{3}{296.299}\right)\)
=\(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{296}-\frac{1}{299}\right)\)
=\(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{299}\right)\)
=\(\frac{1}{3}.\frac{297}{598}\)
=\(\frac{99}{598}\)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{152.155}\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{152}-\frac{1}{155}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{155}\right)\)
\(A=\frac{1}{3}.\frac{153}{310}\)
\(A=\frac{51}{310}\)
`D=1/2.5+1/5.8+1/8.11+...+1/1979.1982`
`=3/3(1/2.5+1/5.8+1/8.11+...+1/1979.1982)`
`=1/3(3/2.5+3/5.8+3/8.11+...+3/1979.1982)`
`=1/3(1/2-1/5+1/5-1/8+1/8-1/11+...+1/1979-1/1982)`
`=1/3(1/2-1/1982)`
`=1/3(991/1982-1/1982)`
`=1/3 . 495/991`
`=165/991`