K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

Ta có : 

\(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}+35=2^5\)

\(\Leftrightarrow\)\(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}=2^5-35\)

\(\Leftrightarrow\)\(\left(\frac{x+1}{2004}+1\right)+\left(\frac{x+2}{2003}+1\right)+\left(\frac{x+3}{2002}+1\right)=32-35+3\)

\(\Leftrightarrow\)\(\frac{x+2005}{2004}+\frac{x+2005}{2003}+\frac{x+2005}{2002}=-3+3\)

\(\Leftrightarrow\)\(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)=0\)

Vì \(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\ne0\)

Nên \(x+2005=0\)

\(\Rightarrow\)\(x=-2005\)

Vậy \(x=-2005\)

Chúc bạn học tốt ~ 

1 tháng 4 2018

Ta có: \(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}+35=2^5\)

\(\Rightarrow\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}=2^5-35\)

\(\Rightarrow\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}=-3\)

\(\Rightarrow\frac{x+1}{2004}+1+\frac{x+2}{2003}+1+\frac{x+3}{2002}+1=-3+3\)

\(\Rightarrow\frac{x+1+2004}{2004}+\frac{x+2+2003}{2003}+\frac{x+3+2002}{2002}=0\)

\(\Rightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}+\frac{x+2005}{2002}=0\)

\(\Rightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)=0\)

Vì \(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\ne0\)

Nên x + 2005 = 0

=> x                = -2005

Vậy x = -2005

25 tháng 5 2016

\(\frac{\sqrt{x-2002}}{x-2002}-\frac{1}{x-2002}+\frac{\sqrt{y-2003}}{y-2003}-\frac{1}{y-2003}+\frac{\sqrt{z-2004}}{z-2004}-\frac{1}{z-2004}=\frac{3}{4}\)

\(1-\frac{1}{x-2002}+1-\frac{1}{y-2003}+1-\frac{1}{z-2004}=\frac{3}{4}\)

\(3-\frac{1}{x-2002}-\frac{1}{y-2003}-\frac{1}{z-2004}=\frac{3}{4}\)

\(\frac{1}{x-2002}+\frac{1}{y-2003}+\frac{1}{z-2004}=3-\frac{3}{4}=\frac{9}{4}\)

=> không có giá trị x,y,z thỏa mãn đề

6 tháng 7 2019

a) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

\(\Leftrightarrow x+2005=0\)

\(\Leftrightarrow x=-2005\)

b) Sửa đề :

\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)

\(\Leftrightarrow x=300\)

c) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)

\(\Leftrightarrow\frac{2-x}{2002}+1=\frac{1-x}{2003}+1-\frac{x}{2004}+1\)

\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\)

\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\)

\(\Leftrightarrow x=2004\)

Vậy....

26 tháng 3 2017

 \(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}\) + 35 = \(^{2^5}\)                                                                                

\(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}\)          = -3

\(\left(\frac{x+1}{2004}+1\right)+\left(\frac{x+2}{2003}+1\right)+\left(\frac{x+3}{2002}+1\right)\) = 0

\(\left(\frac{x+1}{2004}+\frac{2004}{2004}\right)+\left(\frac{x+2}{2003}+\frac{2003}{2003}\right)+\left(\frac{x+3}{2002}+\frac{2002}{2002}\right)\)= 0

\(\left(\frac{x+2005}{2004}\right)+\left(\frac{x+2005}{2003}\right)+\left(\frac{x+2005}{2002}\right)\)= 0

\(\left(x+2005\right).\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)\)           = 0

\(\left(x+2005\right)\)                                                               = 0 \(:\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)\)  

\(\left(x+2005\right)\)                                                               = 0

\(x\)                                                                                    = 0-2005

\(x\)                                                                                    = -2005

7 tháng 3 2018

Bạn chuyển về 1 vế sau đó trừ 1 vào mỗi phân thức ta được : 

\(\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)

Vì biểu thức bên phải khác 0 nên : \(x-2005=0\)=> \(x=2005\)

23 tháng 3 2020

\(\frac{x-5}{2000}+\frac{x-4}{2001}+\frac{x-3}{2002}=\frac{x-2}{2003}+\frac{x-1}{2004}+\frac{x}{2005}\)

\(\Leftrightarrow\frac{x-2005}{2000}+\frac{x-2005}{2001}+\frac{x-2005}{2002}=\frac{x-2005}{2003}+\frac{x-2005}{2004}+\frac{x-2005}{2005}\)

\(\Leftrightarrow\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)

<=> x - 2005 = 0

<=> x = 2005

Vậy ...............

23 tháng 9 2016

\(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)

=> \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}-\frac{x-4}{2001}=0\)

=> \(\left(\frac{x-1}{2004}-1\right)+\left(\frac{x-2}{2003}-1\right)-\left(\frac{x-3}{2002}-1\right)-\left(\frac{x-4}{2001}-1\right)=0\)

=> \(\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)

=> \(\left(x-2005\right).\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

Vì \(\frac{1}{2004}< \frac{1}{2002}\)\(\frac{1}{2003}< \frac{1}{2001}\)

=> \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\)

=> \(x-2005=0\)

=> \(x=2005\)

Vậy \(x=2005\)

7 tháng 2 2018

Ta có: \(\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)

\(\Leftrightarrow\frac{x-1}{2004}-1+\frac{x-2}{2003}-1=\frac{x-3}{2002}-1+\frac{x-4}{2001}-1\)

\(\Leftrightarrow\frac{x-1-2004}{2004}+\frac{x-2-2003}{2003}=\frac{x-3-2002}{2002}+\frac{x-4-2001}{2001}\)

\(\Leftrightarrow\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)

\(\Leftrightarrow\left(x-2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

Vì \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\)

=> x - 2005 = 0

=> x             = 2005

Vậy x = 2005

=> (x - 1)/2004 - 1 + (x - 2)/2003 - 1 = (x - 3)/2002 -1 + (x - 4)/2001 - 1

=> (x - 2005)/2004 + (x - 2005)/2003 = (x - 2005)/2002 + (x - 2005)/2001

=> (x - 2005)/2004 + (x - 2005)/2003 - (x - 2005)/2002 - (x - 2005)/2001 = 0

=> (x - 2005) * ( 1/2004 + 1/2003 - 1/2002 - 1/2001) = 0

Ta thấy  ( 1/2004 + 1/2003 - 1/2002 - 1/2001) khác 0

=> x - 2005 = 0

=> x = 2005

     

1 tháng 2 2018

\(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)

\(\Leftrightarrow\)\(\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-4}{2001}+\frac{x-3}{2002}\)

\(\Leftrightarrow\)\(\frac{x-1}{2004}-1+\frac{x-2}{2003}-1=\)\(\frac{x-4}{2001}-1+\frac{x-3}{2002}-1\)

\(\Leftrightarrow\)\(\frac{x-2005}{2004}+\frac{x-2005}{2003}\)\(=\frac{x-2015}{2001}+\frac{x-2005}{2002}\)

\(\Leftrightarrow\)\(\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2001}-\frac{x-2005}{2002}=0\)

\(\Leftrightarrow\)( x - 2005 ) ( \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2001}-\frac{1}{2002}\))  =  0

Do  \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2001}-\frac{1}{2002}\)\(\ne\)0

\(\Rightarrow\)x  -   2005   =  0

\(\Leftrightarrow\)x  =  2005

Vậy  x  =  2005