Tìm X: 1+x^3=x^2-1 lưu ý ^=MŨ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(5x=6y\Leftrightarrow\frac{x}{6}=\frac{y}{5};x^2-y^3=11\)
Tính chất dãy tỉ số bằng nhau:
\(\frac{x}{6}=\frac{y}{5}=\frac{x^2-y^3}{6^2-5^3}=\frac{11}{-89}=-\frac{11}{89}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{6}=-\frac{11}{89}\Leftrightarrow x=\frac{-11.6}{89}=-\frac{66}{89}\\\frac{y}{5}=-\frac{11}{89}\Leftrightarrow y=\frac{-11.5}{89}=-\frac{55}{89}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2^x+2^x-1 = 96
<=> 2^x-1.(2+1) = 96
<=> 2^x-1 . 3 = 96
<=> 2^x-1 = 96 : 3 = 32 = 2^5
=> x-1 = 5
=> x=6
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1,\\ a,ĐK:x\ge-\dfrac{1}{2}\\ PT\Leftrightarrow\sqrt{2x+1}=\dfrac{2}{3}\Leftrightarrow2x+1=\dfrac{4}{9}\Leftrightarrow x=-\dfrac{5}{18}\left(tm\right)\\ b,PT\Leftrightarrow\left|x-3\right|=2\Leftrightarrow\left[{}\begin{matrix}x-3=2\\3-x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\\ 2,\\ a,=\left|5-x\right|=x-5\\ b,=\sqrt{4a\cdot44a}=\sqrt{176a^2}=4\left|a\right|\sqrt{11}=4a\sqrt{11}\\ c,=\sqrt{\left(2x-1\right)^2}=\left|2x-1\right|=2x-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ý là đề vầy chứ gì:
\(5^x.5^{x+1}.5^{x+2}=10^{18}:2^{18}\)
⇔\(5^{3x+3}=5^{18}\)
⇔\(3x+3=18\)
⇔\(x=5\)
Vậy x=5
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-1\right)^2+\left|2y-x\right|=0\)
có \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left|2y-x\right|\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\2y-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\end{cases}}}\)
vậy_
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(5\left(x+7\right)-12x=15\)
\(5x+35-12x=15\)
\(-7x=15-35\)
\(-7x=-20\)
\(x=\frac{20}{7}\)
vay \(x=\frac{20}{7}\)
b) \(x^2-25-\left(x+5\right)=0\)
\(x^2-5^2-\left(x+5\right)=0\)
\(\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)
\(\left(x+5\right)\left(x-5-1\right)=0\)
\(\left(x+5\right)\left(x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)
vay \(\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)
c) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\left(2x-1\right)\left(2x-1\right)-\left(\left(2x\right)^2-1^2\right)=0\)
\(\left(2x-1\right)\left(2x-1\right)-\left(2x-1\right)\left(2x+1\right)=0\)
\(\left(2x-1\right)\left(2x-1-2x-1\right)=0\)
\(-2.\left(2x-1\right)=0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow x=\frac{1}{2}\)
vay \(x=\frac{1}{2}\)
d) \(x^2.\left(x^2+4\right)-x^2-4=0\)
\(x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\left(x^2-1\right)\left(x^2+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-1=0\\x^2+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1hoacx=-1\\kotontai\end{cases}}\)
vay \(x=1\)hoac \(x=-1\)
\(1+x^3=x^2-1\)
\(\Leftrightarrow x^3-x^2+2=0\)
\(\Leftrightarrow x^3+x^2-2x^2-2x+2x+2=0\)
\(\Leftrightarrow\left(x^3+x^2\right)-\left(2x^2+2x\right)+\left(2x+2\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)-2x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+2\right)=0\)
Do \(x^2-2x+2=0\) là pt vô nghiệm nên loại
\(\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy \(S=\left\{-1\right\}\)