Cho tia Oa . Trên hai nửa mặt phẳng đối nhau có bờ là Oa . Vẽ hai tia Ob và Oc sao cho hai góc aOb và aOc cùng bằng 120 độ.Chứng minh rằng:
a.\(\widehat{aOb}\)=\(\widehat{aOc}\)=\(\widehat{bOc}\)
b.Tia Oa" là tia đối của tia Oa , chứng tỏ tia Oa" là tia phân giác của góc hợp bởi hai tia Ob và Oc
giúp mk với
Chú ý: câu a kẻ luôn tia Oa'' là tia đối của Oa!
a/ Ta có: \(\widehat{a''Ob}+\widehat{bOa}=180\) độ (kề bù)
\(\Rightarrow\widehat{a''Ob}+120=180\)
\(\Rightarrow\widehat{a''Ob}=180-120=60\)độ (1)
Ta lại có: \(\widehat{a''Oc}+\widehat{cOa}=180\)độ (kề bù)
\(\Rightarrow\widehat{a''Oc}+120=180\)
\(\Rightarrow\widehat{a''Oc}=180-120=60\)độ (2)
Từ (1),(2) ta có: \(\widehat{bOc}=120\)độ
Vậy: \(\widehat{aOb}=\widehat{aOc}=\widehat{bOc}\left(đpcm\right)\)
b) Vì đã tính ở câu a hết trơn nên câu này nhẹ nhàng lắm.
\(Oa''\)là phân giác \(\widehat{bOc}\)vì
+ \(Oa\)nằm giữa 2 tia \(Ob;Oc\)
+ \(\widehat{a''Ob}=\widehat{a''Oc}=\frac{\widehat{bOc}}{2}\)
Ps: Check lại coi có sai sót gì ko nha