(2,0 điểm) Cho biểu thức \(A=\left(\dfrac{2}{x+1}-\dfrac{1}{x-1}\right)\div\dfrac{x+4}{x^2+1}\) với \(x\ne\pm1,x\ne-4\).
a) Chứng minh \(A=\dfrac{x-3}{x+4}\).
b) Tìm các giá trị nguyên của $x$ để $A$ nhận giá trị nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(P=\left(\dfrac{3}{x+1}+\dfrac{x-9}{x^2-1}+\dfrac{2}{1-x}\right):\dfrac{x-3}{x^2-1}\)
\(=\left(\dfrac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{x-9}{\left(x+1\right)\left(x-1\right)}-\dfrac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{x-3}{x^2-1}\)
\(=\dfrac{3x-3+x-9-2x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x-3}\)
\(=\dfrac{2x-14}{x-3}\)
b) Ta có: \(x^2-9=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=-3\left(nhận\right)\end{matrix}\right.\)
Thay x=-3 vào biểu thức \(P=\dfrac{2x-14}{x-3}\), ta được:
\(P=\dfrac{2\cdot\left(-3\right)-14}{-3-3}=\dfrac{-20}{-6}=\dfrac{10}{3}\)
Vậy: Khi \(x^2-9=0\) thì \(P=\dfrac{10}{3}\)
c) Để P nguyên thì \(2x-14⋮x-3\)
\(\Leftrightarrow2x-6-8⋮x-3\)
mà \(2x-6⋮x-3\)
nên \(-8⋮x-3\)
\(\Leftrightarrow x-3\inƯ\left(-8\right)\)
\(\Leftrightarrow x-3\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Leftrightarrow x\in\left\{4;2;5;1;7;-1;11;-5\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{4;2;5;7;11;-5\right\}\)
Vậy: Để P nguyên thì \(x\in\left\{4;2;5;7;11;-5\right\}\)
a,Ta có \(x=4-2\sqrt{3}=\sqrt{3}^2-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)do \(\sqrt{3}-1>0\)
\(\Rightarrow A=\frac{1}{\sqrt{3}-1-1}=\frac{1}{\sqrt{3}-2}\)
b, Với \(x\ge0;x\ne1\)
\(B=\left(\frac{-3\sqrt{x}}{x\sqrt{x}-1}-\frac{1}{1-\sqrt{x}}\right):\left(1-\frac{x+2}{1+\sqrt{x}+x}\right)\)
\(=\left(\frac{-3\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1-x-2}{x+\sqrt{x}+1}\right)\)
\(=\left(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\right)\)
\(=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}.\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=1\)
Vậy biểu thức ko phụ thuộc biến x
c, Ta có : \(\frac{2A}{B}\)hay \(\frac{2}{\sqrt{x}-1}\)để biểu thức nhận giá trị nguyên
thì \(\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\sqrt{x}-1\) | 1 | -1 | 2 | -2 |
\(\sqrt{x}\) | 2 | 0 | 3 | -1 |
x | 4 | 0 | 9 | vô lí |
ĐKXĐ: \(x\ne\pm1;x\ne0\)
a)\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)
\(=\left(\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)
\(=\dfrac{x^2+2x+1-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}:\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)
\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)
\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}.\dfrac{5\left(x-1\right)}{2x}-\dfrac{x^2-1}{x^2+2x+1}\)
\(=\dfrac{10}{x+1}-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)^2}\)
\(=\dfrac{10}{x+1}-\dfrac{x-1}{x+1}\)
\(=\dfrac{11-x}{x+1}\)
b) \(A=\dfrac{11-x}{x+1}=2\)
\(\Leftrightarrow11-x=2\left(x+1\right)\)
\(\Leftrightarrow11-x=2x+2\)
\(\Leftrightarrow-x-2x=2-11\)
\(\Leftrightarrow-3x=-9\)
\(\Leftrightarrow x=3\left(nhận\right)\)
c) -Để \(A=\dfrac{11-x}{x+1}\in Z\) thì:
\(\left(11-x\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(12-x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow12⋮\left(x+1\right)\)
\(\Rightarrow\left(x+1\right)\inƯ\left(12\right)\)
\(\Rightarrow\left(x+1\right)\in\left\{1;2;3;4;6;12;-1;-2;-3;-4;-6;-12\right\}\)
\(\Rightarrow x\in\left\{2;3;5;11;-2;-3;-4;-5;-7;-13\right\}\)
a: Khi x=1 thì\(P=\dfrac{1-2}{1+2}=\dfrac{-1}{2}\)
b: \(=\dfrac{3x+6+5x-6+2x^2-4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x}{x-2}\)
c: \(P=A\cdot B=\dfrac{2x}{x-2}\cdot\dfrac{x-2}{x+1}=\dfrac{2x}{x+1}\)
\(P-2=\dfrac{2x-2x-2}{x+1}=\dfrac{-2}{x+1}\)
P<=2
=>x+1>0
=>x>-1
\(A=\left(\dfrac{1}{x^2-1}+\dfrac{1}{x+1}\right):\left(\dfrac{1}{x-1}-\dfrac{1}{x}\right)\)
\(\Rightarrow A=\left(\dfrac{1}{\left(x-1\right)\left(x+1\right)}+\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\right):\left(\dfrac{x}{x\left(x-1\right)}-\dfrac{x-1}{x\left(x-1\right)}\right)\)
\(\Rightarrow A=\dfrac{1+x-1}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-x+1}{x\left(x-1\right)}\)
\(\Rightarrow A=\dfrac{x}{\left(x-1\right)\left(x+1\right)}:\dfrac{1}{x\left(x-1\right)}\)
\(\Rightarrow A=\dfrac{x}{\left(x-1\right)\left(x+1\right)}.x\left(x-1\right)\)
\(\Rightarrow A=\dfrac{x^2}{x+1}\)
đk : xkhác -1 ; 1
\(A=\left(\dfrac{1+x-1}{\left(x+1\right)\left(x-1\right)}\right):\left(\dfrac{x-x+1}{x\left(x-1\right)}\right)=\dfrac{x}{\left(x+1\right)\left(x-1\right)}:\dfrac{1}{x\left(x-1\right)}=\dfrac{x^2}{x+1}\)
`1)P((\sqrtx+1)/(\sqrtx-2)-2/(x-4)).(\sqrtx-1+(\sqrtx-4)/\sqrtx)(x>0,x ne 4)`
`=((x+3\sqrtx+2-2)/(x-4)).((x-\sqrtx+\sqrtx-4)/\sqrtx)`
`=((x+3\sqrtx-4)/(x-4)).((x-4)/\sqrtx))`
`=(x+3\sqrtx)/\sqrtx`
`=(\sqrtx(\sqrtx+3))/\sqrtx`
`=\sqrtx+3(đpcm)`
`2)P=x+3
`<=>\sqrtx+3=x+3`
`<=>x-\sqrtx=0`
`<=>\sqrtx(\sqrtx-1)=0`
Vì `x>0=>\sqrtx>0`
`=>\sqrtx-1=0<=>x=1(tm)`
Vậy `x=1=>\sqrtx+3=x+3`
`1)P((\sqrtx+1)/(\sqrtx-2)-2/(x-4)).(\sqrtx-1+(\sqrtx-4)/\sqrtx)(x>0,x ne 4)`
`=((x+3\sqrtx+2-2)/(x-4)).((x-\sqrtx+\sqrtx-4)/\sqrtx)`
`=((x+3\sqrtx)/(x-4)).((x-4)/\sqrtx))`
`=(x+3\sqrtx)/\sqrtx`
`=(\sqrtx(\sqrtx+3))/\sqrtx`
`=\sqrtx+3(đpcm)`
`2)P=x+3
`<=>\sqrtx+3=x+3`
`<=>x-\sqrtx=0`
`<=>\sqrtx(\sqrtx-1)=0`
Vì `x>0=>\sqrtx>0`
`=>\sqrtx-1=0<=>x=1(tm)`
Vậy `x=1=>\sqrtx+3=x+3`
\(a,A=\dfrac{x\left(x+2\right)+\left(2-x\right)\left(x-2\right)+12-10x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2+2x+2x-4-x^2+2x+12-10x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-4x+8}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=-\dfrac{4}{x+2}\)
Vậy \(A=-\dfrac{4}{\left(x+2\right)}\)