K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2015

Ta thấy: 32>32-1=(3-1).(3+1)=2.4

              52>52-1=(5-1).(5+1)=4.6

              72>72-1=(7-1).(7+1)=6.8

              …………………………

              20072>20072-1=(2007-1).(2007+1)=2006.2008

=>          \(\frac{2}{3^2}<\frac{2}{2.4}\)

               \(\frac{2}{5^2}<\frac{2}{4.6}\)

               \(\frac{2}{7^2}<\frac{2}{6.8}\)

                .................

               \(\frac{2}{2007^2}<\frac{2}{2006.2008}\)

=> \(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2007^2}<\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2006.2008}\)

=> \(A<\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2006}-\frac{1}{2008}\)

=> \(A<\frac{1}{2}-\frac{1}{2008}\)

=> \(A<\frac{1003}{2008}\)

=>ĐPCM

21 tháng 1 2017

bạn Lê Quốc Vượng cũng chơi bang bang hả có những tank gì rồi .Tớ có tank Triệu Vân, joker,tiên

cá, doraemon, quan công, nhện, pea,pega

2 tháng 3 2020

\(A< \frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2007.2009}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2007}-\frac{1}{2009}=\frac{1}{3}-\frac{1}{2009}=\frac{2006}{6027}< \frac{2006}{4016}=\frac{1003}{2008}\)Vây:.......

24 tháng 6 2017

\(A=\frac{2}{3^2}+\frac{2}{5^2}+.......+\frac{2}{2007^2}\)

\(A=2.\left(\frac{1}{3.3}+\frac{1}{5.5}+......+\frac{1}{2007.2007}\right)\)

\(A< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2006.2007}\right)\)

\(A< 2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2006}-\frac{1}{2007}\right)\)

\(A< 2.\left(\frac{1}{2}-\frac{1}{2007}\right)\)

\(A< 2.\frac{2005}{4014}\)

\(A< \frac{2005}{2007}\)

24 tháng 6 2017

Ta thấy

2/(3x3) < 2/(2x4)  = 1/2 – 1/4

2/(5x5) < 2/(4x6) = 1/4 – 1/6

2/(7x7) < 2/(6x8) = 1/6 – 1/8

………

2/(2007x2007) < 2/(2006x2008) = 1/2006 – 1/12008

Nên:

A = 2/3^2 +2/5^2+2/7^2 +.....+2/2007^2 < 2/(2x4) + 2/(4x6) + …. + 2/(2006x2008) =

1/2 – 1/4 + 1/4 – 1/6 + 1/6 – 1/8 + … + 1/2006 – 1/2008 =          

1/2 – 1/2008 = 1003/2008

Vậy: .....

3 tháng 4 2016

a) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}<\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{2006\cdot2007}\)

=>              \(<\frac{1}{4}-\frac{1}{2007}<\frac{1}{4}\)

\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}<\frac{1}{4}\)

b) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{2007\cdot2008}\)

=>    \(>\frac{1}{5}-\frac{1}{2008}>\frac{1}{5}\)

\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)

3 tháng 4 2016

cảm ơn bạn nha

1 tháng 8 2015

1/5^2+1/6^2+...+1/2007^2<1/4.6+1/5.7+...+1/2006.2008

=1/2(1/4-1/6+...+1/2006-1/2008)

=1/2.1/4-1/4016

=1/8-1/4016<50/251 (Vì 1/8<50/251)

17 tháng 3 2016

Bất đẳng thức của bạn sai dấu, để kiểm tra, bạn bấm máy tính tổng sigma của chuỗi 1/i2 với i chạy từ 5 đến 100, kết quả là 0,211...> 50/251.

Bài giải của bạn Đào Đức Mạnh sai ở dòng thứ 3: "=1/2.1/4 - 1/4016", thay vào đó phải sửa là "= (1/2).(1/4 + 1/5 - 1/2007 - 1/2008). Bạn có thể khai triển cụ thể hơn theo hướng giải ban đầu của bạn Mạnh để thấy 1/5 và -1/2007 ko bị triệt tiêu. Vì đpcm đã sai ngay từ đầu nên mình ko làm tiếp cách này.

Mình sẽ chứng minh điều ngược lại: VT > 50/251

VT = 1/5+ 1/6.6 + 1/7.7 +.....+1/2007.2007 > 1/52 + 1/6.7 +1/7.8 + .... +1/2007.2008 = 1/52 + 1/6 - 1/7 +1/7 - 1/8 + .... -1/2007 + 1/2007 - 1/2008 = 1/52 + 1/6 - 1/2008 =1/25 +4/25 - 4/25 + 1/6 -1/2008 = 1/5 +1/150 - 1/2008 >1/5 = 50/250 >50/251 (do 1/150 - 1/2008 >0).

Mình  nghĩ đây ko phải cách giải tốt nhất. Mong nhận được hướng giải quyết thông minh hơn từ các bạn! Thanks in advance!

6 tháng 4 2015

Ta có:

\(\frac{1}{5^2}<\frac{1}{4.5}\)

\(\frac{1}{6^2}<\frac{1}{5.6}\)

\(\frac{1}{7^2}<\frac{1}{6.7}\)

\(...\)

\(\frac{1}{2007^2}<\frac{1}{2006.2007}\)

\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}<\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{2006.2007}\)

\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}<\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2006}-\frac{1}{2007}\)

\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}<\frac{1}{4}-\frac{1}{2007}\)

Mà \(\frac{1}{4}-\frac{1}{2007}<\frac{1}{4}\)

\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}<\frac{1}{4}\)

6 tháng 4 2015

thuỳ dung đúng đấy

14 tháng 2 2016

bai toan nay kho