chứng minh bất đẳng thức :
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh tương đương là xong nha
\(\Leftrightarrow a^2b^2+2ab^2c+b^2c^2\le2a^2b^2+2b^2c^2\)
\(\Leftrightarrow a^2b^2-2ab^2c+b^2c^2\ge0\)
\(\Leftrightarrow\left(ab-bc\right)^2\ge0\)luôn đúng
dấu = khi a=c
_Kudo_
Áp dụng bđt Bunhiacopski:
\(2\left(a^2b^2+b^2c^2\right)=\left(1+1\right)\left(a^2b^2+b^2c^2\right)\ge\left(ab+bc\right)^2\)
Dấu "=" khi a = c
\(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
VT : (a + b + c)2 + a2 + b2 + c2
= a2 + b2 + c2 + 2ab +2bc + 2ac + a2 + b2 + c2
= ( a2 + 2ab + b2 ) + (b2 + 2bc + c2) + ( a2 + 2ac + c2)
= (a + b)2 + (b + c)2 + (a + c)2 = VP
Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)(đpcm)
Có: \(-\left(a-b\right)^2\le0\) với mọi x
=> \(-a^2+2ab-b^2\le0\)
=>\(a^2+2ab+b^2\le2a^2+2b^2\) (cộng cả 2 vế với \(2a^2;2b^2\))
=>\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)
\(\Leftrightarrow-\left(a^2-2ab+b^2\right)\le0\)
\(\Leftrightarrow-\left(a-b\right)^2\le0\)
dấu "=" xẩy ra khi và chỉ khi a=b
1. \(\left|x+5\right|-\left|1-2x\right|=x\left(1\right)\)
Với phương trình kiểu này thì phải lập bảng để xét dấu của x+5 và 1-2x ta có nghiệm của hai nhị thức để chúng bằng 0 lần lượt là -5 và 0,5. Bảng xét dấu:
Ứng với bảng ta có 3 khoảng giá trịn của x ứng với ba phương trình sau.
* Với \(x< -5\) (khoảng đầu)
\(\left(1\right)\Leftrightarrow-\left(x+5\right)-\left(1-2x\right)=x\\ \Leftrightarrow-x+2x-x=5+1\\ \Leftrightarrow0x=6\)
Phương trình vô nghiệm.
* Với \(-5\le x\le0,5\) (khoảng giữa)
\(\left(1\right)\Leftrightarrow\left(x+5\right)-\left(1-2x\right)=x\\ \Leftrightarrow x+2x-x=1-5\\ \Leftrightarrow x=-2\)
\(x=-2\) thỏa mãn điều kiện nên ta lấy.
* Với \(x>0,5\) (khoảng cuối)
\(\left(1\right)\Leftrightarrow\left(x+5\right)-\left(2x-1\right)=x\\ \Leftrightarrow x-2x-x=-5-1\\\Leftrightarrow x=3 \)
\(x=3\) thỏa nãm điều kiện nên ta lấy.
Kết luận tập nghiệm của phương trình (1) là: \(S=\left\{-2;3\right\}\)
Chứng minh bất đẳng thức:
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\\ \Rightarrow2a^2+2b^2\ge a^2+2ab_{ }+b^2\\ \Leftrightarrow2a^2+2b^2-a^2-b^2-2ab\ge0\\ \Leftrightarrow a^2-2ab+b^2\ge0\\\Leftrightarrow\left(a-b\right)^2\ge0\left(1\right)\)
Vì BĐT (2) luôn đúng với mọi a,b do đó ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
Áp dụng BĐT cosi:
\(\left(2+a+b\right)\left(a+4b+ab\right)\ge3\sqrt[3]{2ab}\cdot3\sqrt[3]{4a^2b^2}=9\sqrt[3]{8a^3b^3}=9\cdot2ab=18ab\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=b=2\\a=4b=ab\end{matrix}\right.\left(\text{vô lí}\right)\)
Vậy dấu \("="\) ko xảy ra hay \(\left(2+a+b\right)\left(a+4b+ab\right)>18ab\)
Bất đẳng thức cần chứng minh tương đương:
\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)
\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).
Vậy ta có đpcm.
Làm thông thường thoy; khai triển ra xog chuyển vế
\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)
\(\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)
\(\Leftrightarrow a^2b^4+a^4b^2\ge2a^3b^3\)
\(\Leftrightarrow a^2b^4+a^4b^2-2a^3b^3\ge0\)
\(\Leftrightarrow a^2b^2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a;b\in R\))
Vậy bđt đã đc chứng minh
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)
\(\Leftrightarrow a^2+2ab+b^2-2a^2-2b^2\le0\)
\(\Leftrightarrow-a^2+2ab-b^2\le0\)
\(\Leftrightarrow-\left(a-b\right)^2\le0\) ( dấu "=" xảy ra ⇔ a=b )