Cho tam giác ABC cân tại A.Từ A kẻ AH vuông góc với BC tại H,trên đoạn thẳng AH lấy M tùy ý (M khác A và H)
Chứng minh rằng a) H là trung điểm của BC
b) MB=MC và MH là tia phân giác của góc BMC
c) MB<AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: Xet ΔMCB có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMCB cân tại M
=>MB=MC
mà MH là đường cao
nên MH là phân giác của góc BMC
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: Xét ΔMCB có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMCB cân tại M
=>MH là phân giác của góc BMC
c: ΔMHB vuông tạiH
=>góc BMH<90 độ
=>góc BMA>90 độ
=>BA>MB
a: ΔABC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC và HB=HC
b: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
Do đó: ΔABM=ΔACM
c: ΔABM=ΔACM
=>MB=MC
d: Vì MB=MC
nên ΔMBC cân tại M
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là trung trựccủaCB
b: SỬa đề; BM=CM
AH là trung trực của BC
=>M nằm trên đường trung trực của BC
=>MB=MC
a: ΔCAM cân tại C
=>góc CAM=góc CMA
b: góc HAM+góc CMA=90 độ
góc BAM+góc CAM=90 độ
mà góc CMA=góc CAM
nên góc HAM=góc BAM
=>ĐPCM
c: Xét ΔAHM và ΔANM có
AH=AN
góc HAM=góc NAM
AM chung
=>ΔAHM=ΔANM
=>góc AHM=góc ANM=90 độ
=>MN vuông góc AB
A)TA CÓ TAM GIÁC ABC CÂN TẠI A NÊN AB=AC
DO AH VUÔNG GÓC VS BC NÊN HB=HC
SUY RA H LÀ TRUNG ĐIỂM CỦA BC
B)XÉT TAM GIÁC MBH VÀ TAM GIÁC MCH CÓ:
MB=MC(GT)
HB=HC(CMT)
MH LÀ CẠNH CHUNG NÊN HOẶC MH VUÔNG GÓC VS BC
TG MBH=TG MCH (C.C.C)-(CẠNH HUYỀN-CẠNH GÓC VUÔNG)
SUY RA GÓC BMH= GÓC CMH
TA CÓ : BMH+CMH=BMC SUY RA MH LÀ TIA PHÂN GIÁC CỦA GÓC BMC
C)CÒN PHẦN C MỊ CHỊU MỊ CX LƯỜI TÍNH