Lúc 6 giờ sáng, một người đi xe máy từ A đến B với vận tốc là 30 km/h. Khi đến B người đó nghỉ 2 giờ 15 phút rồi trở về A với vẫn tốc lớn hơn vận tốc lúc đi là 10 km/h và về đến A lúc 11 giờ 45 phút. Tính quãng đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Đổi: \(30ph=\frac{1}{2}h\)
Gọi vận tốc xe máy lúc đi từ A đến B là: x ( km/h; x > 0 )
=> vận tốc xe máy lúc đi từ B về A là: x + 9 ( km/h )
thời gian xe máy đi từ A đến B là: \(\frac{90}{x}\)( giờ )
thời gian xe máy đi từ B về A là: \(\frac{90}{x+9}\)( giờ )
Theo bài ra, ta có:
\(\frac{90}{x}+\frac{90}{x+9}+\frac{1}{2}=5\)
\(\Leftrightarrow\frac{90}{x}+\frac{90}{x+9}=\frac{9}{2}\)
\(\Leftrightarrow\frac{90\left(x+9\right)}{x\left(x+9\right)}+\frac{90x}{x\left(x+9\right)}=\frac{9}{2}\)
\(\Leftrightarrow\frac{90x+810+90x}{x\left(x+9\right)}=\frac{9}{2}\)
\(\Leftrightarrow\frac{180x+810}{x\left(x+9\right)}=\frac{9}{2}\)
\(\Rightarrow2\left(180x+810\right)=9x\left(x+9\right)\)
\(\Leftrightarrow360x+1620=9x^2+81x\)
\(\Leftrightarrow9x^2+81x-360x-1620=0\)
\(\Leftrightarrow9x^2-279x-1620=0\)
\(\Leftrightarrow9\left(x^2-31x-180\right)=0\)
\(\Leftrightarrow x^2-31x-180=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=36\left(tm\right)\\x=-5\left(ktm\right)\end{cases}}\)
Vậy vận tốc xe máy lúc đi từ A đến B là: 36km/h.
Đặt ẩn x là vận tốc xe máy (x>0)
Lúc đầu đi vs x km/h thì lúc sau là x+9 km/h
Thời gian đi từ A -> B là 90/x thì thời gian từ B -> A là 90/x+9
Đến B còn nghỉ 30p=1/2h
Lập hệ phương trình thời gian:
(90/x)+1/2+(90/x+9)=5
<=> (90/x)+(90/x+9)=5-1/2
<=> (90.(x+9)+90.x)/x.(x+9)=9/2
<=> 90.x+810+90.x=(9/2).x.(x+9)
<=>180.x+810=(9/2)x^2+(81/2).x
<=> 0 = (9/2).x^2 - (279/2).x - 810
Gpt đc x=36 hoặc x=-5( loại vì ko thỏa mãn điều kiện)
Gọi vận tốc xe máy lúc đi từ A đến B là x
Gọi vận tốc xe máy lúc đi từ B đến A là y
(km/h; x > 0; y > 9)
Do vận tốc lúc về lớn hơn vận tốc lúc đi là 9 km/h => Ta có phương trình:
y - x = 9 (1)
Thời gian người đó đi từ A đến B là \(\dfrac{90}{x}\) (giờ)
Thời gian người đó đi từ B đến A là \(\dfrac{90}{y}\) (giờ)
Do thời gian người đó đi là 5 giờ => Ta có phương trình:
\(\dfrac{90}{x}+\dfrac{90}{y}+\dfrac{1}{2}=5\left(2\right)\)
(1)(2) <=> \(\left\{{}\begin{matrix}y-x=9< =>x=y-9\\\dfrac{90}{x}+\dfrac{90}{y}-\dfrac{9}{2}=0\left(3\right)\end{matrix}\right.\)
(3) <=> \(\dfrac{10}{x}+\dfrac{10}{y}-\dfrac{1}{2}=0\)
<=> \(\dfrac{20x+20y-xy}{2xy}=0\)
<=> \(20x+20y-xy=0\)
<=> 20(y-9) + 20y - (y-9)y = 0
<=> 20y - 180 + 20y - y2 +9y = 0
<=> y2 - 49y + 180 = 0
<=> (y-45)(y-4) = 0
<=> \(\left[{}\begin{matrix}y=45\left(c\right)\\y=4\left(l\right)\end{matrix}\right.\)
Thay y = 45 vào phương trình (1), ta có:
x = 45 - 9 = 36 (tm)
=> Vận tốc xe máy lúc đi từ A đến B là 36 km/h
Gọi vận tốc xe máy lúc đi từ A đến B là x (km/h; x > 0)
Vận tốc xe máy lúc đi từ B đến A là x + 9 (km/h)
Thời gian người đó đi từ A đến B là \(\dfrac{90}{x}\) (giờ)
Thời gian người đó đi từ B đến A là \(\dfrac{90}{x+9}\) (giờ)
Đổi 30 phút = \(\dfrac{1}{2}\) giờ
Do thời gian người đó đi là 5 giờ => Ta có phương trình
\(\dfrac{90}{x}+\dfrac{90}{x+9}+\dfrac{1}{2}=5\)
<=> \(\dfrac{90}{x}+\dfrac{90}{x+9}-\dfrac{9}{2}=0\)
<=> \(\dfrac{180\left(x+9\right)+180x-9x\left(x+9\right)}{2x\left(x+9\right)}=0\)
<=> \(180x+1620+180x-9x^2-81x=0\)
<=> \(9x^2-279x-1620=0\)
<=> \(x^2-31x-180=0\)
<=> (x-36)(x+5) = 0
<=> \(\left[{}\begin{matrix}x=36\left(c\right)\\x=-5\left(l\right)\end{matrix}\right.\)
KL: Vận tốc xe máy lúc đi từ A đến B là 36km/h
Đổi 20 phút = 1/3 giờ
Thời gian người đó đi từ A đến B rồi quay về A là:
12 giờ 20 phút - 6 giờ 30 phút = 5 giờ 50 phút \(=\frac{35}{6}\)(giờ)
Gọi độ dài quãng đường AB là x (km) (x > 0)
Ta có: \(\frac{x}{25}+\frac{1}{3}+\frac{x}{30}=\frac{35}{6}\)
\(\Leftrightarrow\frac{6x+50+5x}{150}=\frac{875}{150}\)
\(\Leftrightarrow11x+50=875\Leftrightarrow x=75\)(thỏa mãn)
Quãng đường AB dài 75 km.
`Answer:`
Tổng thời gian từ lúc đi đến lúc trở về: `11` giờ `45` phút `-6` giờ `=5` giờ `45` phút `=\frac{23}{4}` giờ
Vận tốc đi từ `B` về `A:` \(30+10=40km/h\)
`2` giờ `15` phút `=9/4` giờ
Gọi độ dài của quãng đường `AB` là `x(x>0)`
Thời gian đi từ `A` đến `B:` `\frac{x}{30}` giờ
Thời gian đi từ `B` về `A:` `\frac{x}{40}+\frac{9}{4}` giờ
Mà tổng thời gian đi và về là `\frac{23}{4}` giờ
`=>\frac{x}{30}+\frac{x}{40}+\frac{9}{4}=\frac{23}{4}`
`=>x=60km`