K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2023

\(\left\{{}\begin{matrix}3x+5y=1\\x-8y=10\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\3x-24y=30\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}29y=-29\\x-8y=10\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-1\\x-8\left(-1\right)=10\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2;-1\right)\)

17 tháng 2 2023

\(\left\{{}\begin{matrix}3x+5y=1\\3x+5y=1\end{matrix}\right.\)

Có sai dấu ko bạn 

Nếu lấy pt thứ nhất trừ thứ 2 ra 0 là vô lý r

29 tháng 11 2021

1A,B,D

2 M=2

\(=\dfrac{3}{4x}\)

\(=\dfrac{4\left(x+y\right)}{x-y}=\dfrac{4x+4y}{x-y}\)

5 K rút gọn đc

\(=\dfrac{4\left(x-1\right)+2\left(x-1\right)}{6\left(x-1\right)}=\dfrac{6\left(x-1\right)}{6\left(x-1\right)}=1\)

29 tháng 11 2021

cảm ơn nhé

21 tháng 10 2021

Ta có : 2x=5y2x=5y ⇒x5=y2⇒x5=y2⇒3x15=y2⇒3x15=y2

Áp dụng tính chất của dãy tỉ số bằng nhau có :

3x15=y2=3x+y15+2=1173x15=y2=3x+y15+2=117

⇒3x15=117⇒x=517⇒3x15=117⇒x=517

⇒y2=117⇒y=217⇒y2=117⇒y=217

 

21 tháng 10 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x+y}{3\cdot5+2}=\dfrac{1}{17}\)

Do đó: \(\left\{{}\begin{matrix}x=\dfrac{5}{17}\\y=\dfrac{2}{17}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
22 tháng 11 2023

Lời giải:
Đặt $3x+5y=a; x+4y=b$.

Ta có: $2a+b=2(3x+5y)+x+4y=7x+14y=7(x+2y)\vdots 7$

$ab\vdots 7\Rightarrow a\vdots 7$ hoặc $b\vdots 7$

Nếu $a\vdots 7$. Khi đó: $2a+b\vdots 7\Rightarrow b\vdots 7$

$\Rightarrow ab\vdots (7.7)$ hay $ab\vdots 49$

Nếu $b\vdots 7$. Khi đó: $2a+b\vdots 7\Rightarrow 2a\vdots 7\Rightarrow a\vdots 7$

$\Rightarrow ab\vdots (7.7)$ hay $ab\vdots 49$
Vậy ta có đpcm.

 

16 tháng 7 2021

a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)

áp dụng tính chất dãy tỉ số = nhau

\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)

\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)

\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)

\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)

b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)

có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)

\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)

áp dụng t/c dãy tỉ số = nhau

\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)

\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)

\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)

\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)

c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)

\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)

thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)

\(=>y=2\)

\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)

d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)

thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)

\(=>x=\dfrac{2.3}{3}=2\)

 

 

16 tháng 7 2021

c, từ đoạn này á

\(\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)

\(< =>\dfrac{y^3}{8}+\dfrac{8y^3}{8}+\dfrac{27y^3}{8}=36\)

\(=>\dfrac{36y^3}{8}=36=>36y^3=8.36=>y^3=8=>y=2\)

NV
29 tháng 1 2021

Từ hệ thứ 2: \(\left\{{}\begin{matrix}3x+5y=7\\2x-y=2m\end{matrix}\right.\)

So sánh với hệ thứ nhất, ta thấy 2 hệ tương đương khi và chỉ khi \(2m=6\)

\(\Leftrightarrow m=3\)

29 tháng 1 2021

cụ thể đc kh bn

12 tháng 2 2022

Thay x = 1/3 ; y = -1/5 vào Q ta được 

\(Q=\dfrac{3.1}{3}-5\left(-\dfrac{1}{5}\right)+1=3+1+1=5\)

12 tháng 2 2022

Thay x = 1/3 ; y = -1/5 vào Q ta được 

Q=3.13−5(−15)+1=3+1+1=5