K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

Ta có x^2014 + 2013y = 2015 

     => x^2014 < 2015

     => x = 1 hoặc x = 0

  + Với x =1 => 1 + 2013y = 2015

                   =>2013y = 2014 

                   =>  không có y thỏa mãn

 = Với x = 0 => 0 + 2013y = 2015

                   =>   2013y = 2015

                   =>   không có y thỏa mãn

  Vậy không có x, y thỏa mãn 

23 tháng 3 2017

Tìm số ab có gạch trên : (6a-2b).(3a+ 12b) chia hết cho 13

2 tháng 10 2017

Mik đang cần gấp có ai giúp mik với

a)Ta có:\(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\Rightarrow\left(x-1\right)\left(x+2\right)\le0\)(Do\(2x^2+1>0\)

suy ra x-1 và x+2 trái dấu

Mà x-1<x+2

\(\Rightarrow\hept{\begin{cases}x-1\le0\Rightarrow x\le1\\x+2\ge0\Rightarrow x\ge-2\end{cases}}\)

\(\Rightarrow-2\le x\le1\)

b)Ta có Nếu \(x\ge2\Rightarrow x^{2016}\ge2^{2016}>2015\left(L\right)\)

Do đó x<2 mà\(x\inℕ\)

\(\Rightarrow x\in\left\{0;1\right\}\)

Với x=0 thì y=2015/2013(Loại)

Với x=1 thì y=2014/2013(Loại)

Vậy...............

19 tháng 1 2020

                                                             Bài giải

a, \(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\)

Do \(\left(2x^2+1\right)\ge0\)

Nên để tích trên bé hơn hoặc bằng 0 thì \(\left(x-1\right)\) và \(\left(x+2\right)\) trái dấu hoặc bằng 0

Mà \(x-1< x+2\)

\(\Rightarrow\hept{\begin{cases}x-1< 0\\x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}}\Rightarrow\text{ }-2\le x\le1\)

Mà \(x\in N\text{ }\Rightarrow\text{ }x\in\left\{0\text{ ; }1\right\}\)

1 tháng 3 2020

Ta có:

\(x^2-2xy+2y^2-2x+6y+5=\left(x^2-xy+y^2\right)+y^2-2\left(x-y\right)+4y+5\)

\(=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(y^2+4y+4\right)\)

\(=\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-y=1\\y=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y+1=-1\\y=-2\end{cases}}}\)

15 tháng 11 2017

ta có: \(x^2+xy-2012x-2013y-2014=0.\)

\(\Leftrightarrow x\left(x+y\right)-2013\left(x+y\right)+x-2013=1\)

\(\Leftrightarrow\left(x+y\right)\left(x-2013\right)+x-2013=1\)

\(\Leftrightarrow\left(x-2013\right)\left(x+y+1\right)=1\)

mà x,y là các số nguyên nên

\(\orbr{\begin{cases}\hept{\begin{cases}x-2013=1\\x+y+1=1\end{cases}}\\\hept{\begin{cases}x-2013=-1\\x+y+1=-1\end{cases}}\end{cases}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=2014\\y=-2014\end{cases}}\\\hept{\begin{cases}x=2012\\y=-2012\end{cases}}\end{cases}}}\)

vậy (x;y)={ (2014;-2014) ;(2012;-2012)}

20 tháng 5 2018

\(x^2+xy-2012x-2013y-2014=0\) \(0\)

\(\Leftrightarrow x\left(x+y\right)-2013x-2013y+x-2013-1=0\)

\(\Leftrightarrow x\left(x+y\right)-2013\left(x+y\right)+\left(x-2013\right)=1\)

\(\Leftrightarrow\left(x+y\right).\left(x-2013\right)+\left(x-2013\right)=1\)

\(\Leftrightarrow\left(x-2013\right).\left(x+y+1\right)=1\)

Mà x,y lại là số nguyên 

Vậy \(\hept{\begin{cases}\left(x;y\right)=\left(2014;2014\right)\\\left(x;y\right)=\left(2012;2012\right)\end{cases}}\)