K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2019

Gọi 5 số nguyên dương đã cho là K1, K2, K3, K4, K5 (phân biệt từng đôi một).Ta có : 
K1 = 2^(a1).3^(b1) 
K2 = 2^(a2).3^(b2) 
K3 = 2^(a3).3^(b3) 
K4 = 2^(a4).3^(b4) 
K5 = 2^(a5).3^(b5) 
(a1,a2,a3,... và b1,b2,b3,... đều là số tự nhiên) 
Xét 4 tập hợp sau : 
+ A là tập hợp các số có dạng 2^m.3^n (với m lẻ, n lẻ) 
+ B là tập hợp các số có dạng 2^m.3^n (với m lẻ, n chẵn) 
+ C là tập hợp các số có dạng 2^m.3^n (với m chẵn, n lẻ) 
+ D là tập hợp các số có dạng 2^m.3^n (với m chẵn, n chẵn) 
Rõ ràng trong 5 số K1, K2, K3, K4, K5 chắc chắn có ít nhất 2 số thuộc cùng 1 tập hợp ví dụ Ki và Kj 
Ki = 2^(ai).3^(bi) và Kj = 2^(aj).3^(bj) ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) 
Vì Ki và Kj thuộc cùng 1 tập hợp ---> ai và aj cùng tính chẵn lẻ, bi và bj cùng tính chẵn lẻ ---> ai+aj và bi+bj đều chẵn ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) là số chính phương. 

22 tháng 9 2020

Cách 1: 

Số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0.

(x;y) chỉ có thể (C;C); (L;L); (C;L); (L;C) vì có 5 số 4 dạng nên tồn tại 2 số cùng một dạng nên tích 2 số này là số chính phương.

Cách 2:

Ta dễ dàng chứng minh được trong 3 số tự nhiên bất kỳ luôn tìm được 2 số bất kỳ mà tổng của chúng chia hết cho 2.

Vì số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0 nên ta luôn chọn được 2 số mà tích của nó là số chính phương.