Tìm stn nn bt rằng khi chia số này cho 29 dư 5 và chia 31 dư 28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số tự nhiên cần tìm là a
a chia cho 29 dư 5 => a = 29p + 5 ( p ∈ N )
tương tự: a = 31q + 28 ( q ∈ N )
=> 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p - q >=1
a nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p - q) – 23 nhỏ nhất
=> p - q nhỏ nhất
Do đó p - q = 1 => 2q = 29 - 23 = 6
=> q = 3
Vậy số cần tìm là: a = 31q + 28
= 31. 3 + 28 = 121
Gọi snt nhỏ nhất cần tìm là
Do a chia 29 dư 5 ; chia 31 dư 28
=> a = 29m + 5 = 31n + 28 (m,n thuộc N)
=> 29 m = 31n + 23
=> 29m - 29n = 2n + 23
=> 29 . ( m - n ) = 2n + 23
=> 2n + 23 chia hết cho 29
Để a nhỏ nhất thì n nhỏ nhất => 2n+23 nhỏ nhất
mà 2n + 23 là số lẻ nên => 2n + 23 = 29
2n = 6
n = 3
a = 31 . 3 + 28 = 121
Nhớ k mik nha pn !!1
Gọi số tự nhiên cần tìm là a
Chia cho 29 dư 5 => a = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
=> 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
a nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: a = 31q + 28 = 31. 3 + 28 = 121
Nếu chia hết cho 29 thì chia 31 du 28-5=23
hiệu của 31và 29 là
31-29=2
thương của phép tính chia cho 31 là:
(29-230:2=123
số cần tìm là:
31.13=377
số tự nhiên A chia cho 29 dư 5 nghĩa là A = 29p + 5 ( p ∈ N ) tương tự A = 31q + 28 ( q ∈ N ) nên
31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q )
vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121
Thử lại 121 = 31 . 3 + 28 thỏa mãn đề bài
Duyệt !
c1
số tự nhiên A chia cho 29 dư 5 nghĩa là A = 29p + 5 ( p ∈ N ) tương tự A = 31q + 28 ( q ∈ N ) nên
31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q )
vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121
Thử lại 121 = 31 . 3 + 28 thỏa mãn đề bài
c2
Gọi số phải tìm là x.Đặt A = x - 5
x chia 29 dư 5 => A chia hết cho 29
x chia 31 dư 28 => A chia 31 dư 23 => A=31k+23 (k nguyên)
Cho k=0,1,2,3,...ta thấy khi k=3 thì A=116 chia hết cho 29
Vậy x = A+5=116+5=121.
Gọi số phải tìm là x.Đặt A = x - 5
x chia 29 dư 5 => A chia hết cho 29
x chia 31 dư 28 => A chia 31 dư 23 => A=31k+23 (k nguyên)
Cho k=0,1,2,3,...ta thấy khi k=3 thì A=116 chia hết cho 29
Vậy x = A+5=116+5=121.
số tự nhiên A chia cho 29 dư 5 nghĩa là A = 29p + 5 ( p ∈ N ) tương tự A = 31q + 28 ( q ∈ N ) nên
31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q )
vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121
Thử lại 121 = 31 . 3 + 28 thỏa mãn đề bài .
`#iv`
Gọi `a` là số cần tìm `(ainNN)`
Theo đề bài ta có :
`a=29q+5`
`a=31p+28`
`=>29q+5=31p+28`
`=>29q-29p=2p+28-5`
`=>29(q-p)=2p+23`
Mà `2p+23` là số lẻ
`->q-p` sẽ là số lẻ ( vì `29q+5=31p+28)`
`=>q-p >= 1`
Mà `a` là số tự nhiên nhỏ nhất
`=>q-p=1`
Ta có : `29.1=2p+23`
`=>2p=29-23`
`=>2p=6`
`=>p=6:2`
`=>p=3`
Vậy `a=31.3+28`
`=93+28`
`=121`
Vậy số cần tìm là `121`