tam giác RST vuông tại R có đường cao RH. Biết SH = 3,6, HT =6,4.
a) tính RH
B) tính \(S_{RHT}\)
c) vẽ HD vuông góc RS . HE vuông góc RT . Tính DE và diện tích RDHE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔRST vuông tại R có RH là đường cao ứng với cạnh huyền TS, ta được:
\(RH^2=SH\cdot HT\)
\(\Leftrightarrow RH^2=3.6\cdot6.4=23.04\)
hay RH=4,8(cm)
Vậy: RH=4,8cm
b) \(S_{RHT}=\dfrac{RH\cdot TH}{2}=\dfrac{4.8\cdot6.4}{2}=15.36\left(cm^2\right)\)
c) Xét tứ giác RDHE có
\(\widehat{ERD}=90^0\)
\(\widehat{REH}=90^0\)
\(\widehat{RDH}=90^0\)
Do đó: RDHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
góc MAC+góc AED=90 độ
=>góc MAC+góc AHD=90 độ
=>góc MAC+góc B=90 độ
=>góc MAC=góc MCA và góc MAB=góc MBA
=>MA=MB=MC
=>M là trung điểm của BC
b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
AH=15*20/25=12cm
HB=15^2/25=9cm
HC=20^2/25=16(cm)
AD=12^2/15=144/15=9,6cm
AE=12^2/20=7,2cm
\(S_{ADE}=\dfrac{1}{2}\cdot7.2\cdot9.6=34.56\left(cm^2\right)\)
a:
BC=35cm
\(AH=\dfrac{AB\cdot AC}{BC}=16.8\left(cm\right)\)
b: \(AE=\dfrac{AH^2}{AC}=\dfrac{16.8^2}{28}=10.08\left(cm\right)\)
\(AD=\dfrac{AH^2}{AB}=\dfrac{16.8^2}{21}=13.44\left(cm\right)\)
Do đó: \(S_{AED}=\dfrac{AD\cdot AE}{2}=\dfrac{13.44\cdot10.08}{2}=67.7376\left(cm^2\right)\)
1: AC=20cm
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)
2: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
3: Xét tứ giác AFDH có
AF//DH
AF=DH
Do đó: AFDH là hình bình hành
b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔHAC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2)suy ra \(AD\cdot AB=AE\cdot AC\)
a: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=30\cdot20=600\left(cm^2\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=24\left(cm\right)\)
\(BH=\sqrt{30^2-24^2}=18\left(cm\right)\)
CH=32(cm)
\(S_{ABH}=\dfrac{24\cdot18}{2}=24\cdot9=216\left(cm^2\right)\)
\(S_{ACH}=\dfrac{24\cdot32}{2}=12\cdot32=384\left(cm^2\right)\)
b: \(AD=\dfrac{AH^2}{AB}=\dfrac{24^2}{30}=19.2\left(cm\right)\)
\(HD=\dfrac{AH\cdot HB}{AB}=\dfrac{24\cdot18}{30}=14.4\left(cm\right)\)
\(S_{AEHD}=HD\cdot AD=19.2\cdot14.4=276.48\left(cm^2\right)\)