Chứng minh rằng x+4y chia hết cho19<=>13x+14y chia hết cho 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 3x + 5y và B = x + 4y
Theo bài ra ta có: 3B - A = (3x + 12y) - (3x - 5y) = 7y chia hết cho 7
Nếu A chia hết cho 7 thì 3B cũng chia hết cho 7
=> B chia hết cho 7
Nếu B chia hết cho 7 => 3B chia hết cho 7 => A chia hết cho 7 ( Theo t/c chia hết của 1 tổng)
giả sử :
3x+5y chia hết 7
=> 5(3x+5y) chia hết 7 (5,7)=1
=>15x+25y chia hết 7
=>(14x + 21y) + (x+4y)
mà 14x + 21y chia hết 7 => 3x+5y chia hết cho 7 <=> x+4y chia hết 7
theo tui thì tui bít làm nhưng ko giải ra 10 đấy
kết quả là 10
nhân cái ban đàu vs 4 rồi + vs cái kia nó chia hết cho 37 => 13x+18y chia hết cho 37
Ta có :
\(9.\left(7x+4y\right)-2.\left(13x+18y\right)=63x+36y-26x-36y=37x\)chia hết cho 37.
Vì 7x + 4y chia hết cho 37 => 9.(7x + 4y) chia hết cho 37
=> 2.(13x+18y) chia hết cho 37 mà 2 ko chia hết ho 37 => 13x + 18y chia hết cho 37 (đpcm)
k nha bạn
Giả sử 13x + 18y chia hết cho 37 (1)
Vì 7x + 4y chia hết cho 37 nên 14(7x + 4y) chia hết cho 37
=> 98x + 56y chia hết cho 37 (2)
Từ (1) và (2) => (13x + 18y) + (98x + 56y) chia hết cho 37
=> 13x + 18y + 98x + 56y chia hết cho 37
=> (13x + 98x) + (18y + 56y) chia hết cho 37
=> 111x + 74y chia hết cho 37
=> 37(3x + 2y) chia hết cho 37
=> Giả sử đúng
Vậy 13x + 18y chia hết cho 37 (đpcm)
Gọi d là Ước chung lớn nhất của 11a + 2b và 18a + 5
=> 11a + 2b chia hết cho d
=> 18a + 5b chia hết cho d
=> 11( 18a + 5b ) - 18( 11a + 2b ) chia hết cho d
=> ( 198a + 55b ) - ( 198a + 36b ) chia hết cho d
=> 19b chia hết cho d ( 1 )
=> 5( 11a + 2b ) - 2( 18a + 5b ) chia hết cho d
=> ( 55a + 10b ) - ( 36a + 10b ) chia hết cho d
=> 19a chia hết cho d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra 19 chia hết cho d
=> d thuộc Ư(19)
=> d thuộc { 1 ; 19 }
Mà d là Ước chung lớn nhất của 11a + 2b và 18a + 5b
=> d = 19.