abcd + abcd + 12 + a + b +c + d =123456
tìm abcd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu 1 trong a,b,c,d chẵn thì 1 trong 4 đẳng thức sai (kết quả ra chẵn do 1 số chẵn nhân 1 tích thì chẵn) =>a,b,c,d không tồn tại (do a,b,c,d phải thoả cả 4 đẳng thức)
Nếu a,b,c,d đều lẻ thì 1số lẻ nhân cho 1 số chẵn (tích 3 số lẻ trừ 1 thì chẵn) thì là một số chẵn=>a,b,c,d không tồn tại
Vậy không tồn tại các số nguyên a,b,c,d để thoả yêu cầu đề bài
Ta có góc A + B + C + D = 3600
Mà góc A = 6x, B = 5x + 8, C = 4x - 12, D = 3x + 4
=> 6x + 5x + 8 + 4x - 12 + 3x + 4 = 3600
=> 18x = 3600
=> x = 200
Và thế x vào, ta có:
góc A = 1200
B = 1080
C = 680
D = 640
Do tổng 4 góc trong 1 tứ giác bằng 360 độ
\(\Rightarrow6x+\left(5x+8\right)+\left(4x-12\right)+\left(3x+4\right)=360\)
\(\Rightarrow18x=360\)
\(\Rightarrow x=20\)
Vậy: \(A=6x=120^0\)
\(B=5x+8=108^0\)
\(C=4x-12=68^0\)
\(D=3x+4=64^0\)
Ta chứng minh bất đẳng thức sau
Với x, y, z > 0 ta luôn có \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\) (1)
Theo BĐT Cô-si
\(x^4+x^4+y^4+z^4\ge4\sqrt[4]{x^8y^4z^4}=4x^2yz\)
\(y^4+y^4+z^4+x^4\ge4\sqrt[4]{y^8z^4x^4}=4y^2zx\)
\(z^4+z^4+x^4+y^4\ge4\sqrt[4]{z^8x^4y^4}=4z^2xy\)
Cộng vế theo vế ta được: \(4\left(x^4+y^4+z^4\right)\ge4\left(x^2yz+y^2zx+z^2xy\right)\)
\(\Leftrightarrow\) \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)
Vậy (1) đc c/m
Bất đẳng thức cần c/m có thể viết lại thành
\(\frac{abcd}{a^4+b^4+c^4+abcd}+\frac{abcd}{b^4+c^4+d^4+abcd}+\frac{abcd}{c^4+d^4+a^4+abcd}+\frac{abcd}{d^4+a^4+b^4+abcd}\le1\)
Áp dụng (1) ta có
\(\frac{abcd}{a^4+b^4+c^4+abcd}\le\frac{abcd}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)
Tương tự
\(\frac{abcd}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\)
\(\frac{abcd}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)
\(\frac{abcd}{d^4+a^4+b^4+abcd}\le\frac{c}{a+b+c+d}\)
Cộng theo vế suy ra đpcm.
Theo BĐT AM-GM: \(a^4+b^4\ge2a^2b^2\)
Tương tự suy ra \(a^4+b^4+c^4\)\(\ge a^2b^2+b^2c^2+c^2a^2\)
Tiếp tục dùng AM-GM: \(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2ab^2c\)
Tương tự suy ra \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4+abcd\ge abc\left(a+b+c\right)+abcd\)\(=abc\left(a+b+c+d\right)\)
\(\Rightarrow\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)
Tương tự cho 3 BĐT còn lại rồi cộng theo vế:
\(VT\le\frac{a+b+c+d}{abcd\left(a+b+c+d\right)}=\frac{1}{abcd}=VP\)
Đề bài sai rồi bạn ơi