Cho tổng \(\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+9}=\frac{p}{q}\) trong đó n ,p, q là số nguyên dương và \(\frac{p}{q}\)là phân số tối giản. Tìm số tự nhiên nhỏ nhất n để q chia hết cho 2006
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đáp án nè:
2006 = 2.17.59
Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006
Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.
Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59
suy ra n(n+1)...(n+9) chia hết cho 2006
* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.
- Đặt S = 1/50 + 1/51 + ... + 1/59
1/50 + 1/51 + ... + 1/58 = A/B (trong đó B ko chia hết 59)
suy ra: S = A/B + 1/59 = (59A + B)/59B = p/q
hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)
Do B ko chia hết 59 suy ra q chia hết 59.
- Đặt 1/50 + 1/52 + ... + 1/58 = C/D ta cũng có D ko chia hết cho 17
Chứng minh tương tự suy ra q chia hết cho 59, 17, 2
suy ra (đpcm)
1 ) Vì số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó
Để \(\left(n+3\right)\left(n+1\right)\)là nguyên tố
\(\Rightarrow n+1=1,n+3\)là số nguyên tố do \(n+3>n+1\)
\(n=0\Rightarrow\left(n+3\right)\left(n+1\right)=3\)
\(\Rightarrow n=0\)( chọn )
2 ) Tổng 7a5 + 8b4 chia hết cho 9 nên 7 + a + 5 + 8 + b + 4 \(⋮\) 9 , tức là :
24 + a + b \(⋮\) 9 . Suy ra a + b \(\in\){ 3 ; 12 } .
Ta có a + b > 3 ( vì a – b = 6 ) nên a + b = 12 .
Từ a + b = 12 và a – b = 6 , ta có a = ( 12 + 6 ) : 2 = 9
Suy ra b = 3 .
Thử lại : 795 + 834 = 1629 chia hết cho 9 .
Ta có:
1/n + 3 = 1 / 1 + (n + 2)
2/n + 4 = 2 / 2 + (n + 2)
3/n + 5 = 3 / 3 + (n + 2)
....
2001/n + 2003 = 2001 / 2001 + (n + 2)
2002/n + 2004 = 2002 / 2002 + (n + 2)
Ta thấy các phân số trên đều có dạng a/a + (n + 2)
Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau
=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau
Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003
=> n = 2003 - 2 = 2001
Vậy n = 2001
nhớ k nha
Ta có:
1/n + 3 = 1 / 1 + (n + 2)
2/n + 4 = 2 / 2 + (n + 2)
3/n + 5 = 3 / 3 + (n + 2)
....
2001/n + 2003 = 2001 / 2001 + (n + 2)
2002/n + 2004 = 2002 / 2002 + (n + 2)
Ta thấy các phân số trên đều có dạng a/a + (n + 2)
Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau
=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau
Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003
=> n = 2003 - 2 = 2001
Vậy n = 2001
2006 = 2.17.59
Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006
Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.
Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59
suy ra n(n+1)...(n+9) chia hết cho 2006
* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.
- Đặt S = 1/50 + 1/51 + ... + 1/59
1/50 + 1/51 + ... + 1/58 = A/B (trong đó B ko chia hết 59)
suy ra: S = A/B + 1/59 = (59A + B)/59B = p/q
hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)
Do B ko chia hết 59 suy ra q chia hết 59.
- Đặt 1/50 + 1/52 + ... + 1/58 = C/D ta cũng có D ko chia hết cho 17
Chứng minh tương tự suy ra q chia hết cho 59, 17, 2
suy ra (đpcm
2006 = 2.17.59
Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006
Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.
Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59
suy ra n(n+1)...(n+9) chia hết cho 2006
* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.
- Đặt S = 1/50 + 1/51 + ... + 1/59
1/50 + 1/51 + ... + 1/58 = A/B (trong đó B ko chia hết 59)
suy ra: S = A/B + 1/59 = (59A + B)/59B = p/q
hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)
Do B ko chia hết 59 suy ra q chia hết 59.
- Đặt 1/50 + 1/52 + ... + 1/58 = C/D ta cũng có D ko chia hết cho 17
Chứng minh tương tự suy ra q chia hết cho 59, 17, 2
suy ra (đpcm