K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2016

A=1/2{(1/1*2-1/2*3)+(1/2*3-1/3*4)+(1/3*4-1/4*5)+...+(1/18*19-1/19*20)}
  =1/2{1/1*2-1/19*20}
  =1/2*189/380
  =189/760
vì 189/760<1/4
nên A=...<1/4

AH
Akai Haruma
Giáo viên
25 tháng 9 2023

Lời giải:

Gọi tổng trên là $A$

$A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}$

$2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{18.19.20}$

$=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+....+\frac{20-18}{18.19.20}$

$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}$

$=\frac{1}{1.2}-\frac{1}{19.20}=\frac{189}{380}$

$\Rightarrow A=\frac{189}{760}$

18 tháng 4 2024

ĐÚNG ĐÓ BẠN ƠI

 

 

26 tháng 7 2016

B= 1/ 1.2.3 + 1/ 2.3 4 + 1/ 3.4.5 + .... + 1/ 48.49.50

Mà ta có:

1/ 1.2 - 1/ 2.3 = 2/ 1.2.3

1/ 2.3 - 1/3.4 = 2/ 2.3.4

Từ đó=> B = 1/2 . ( 2/ 1.2.3 + 2/ 2,3.4 + ... + 2/ 18. 19. 20 )

= 1/2 .( 1/ 1.2 – 1/ 2.3 + 1/ 2.3 - .....- 1/19.20)

= 1/2. ( 1/ 1.2 – 1/ 19.20 ) = 1/ 2 . 189/380 = 189/760


 

11 tháng 7 2015

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{19.20}\right)=\frac{1}{4}-\frac{1}{2.19.20}<\frac{1}{4}\)

B=\(\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}< 3\)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

15 tháng 12 2017

A = 1/1.2.3 + 1/2.3.4 + ... + 1/18.19.20 

\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)

\(A=\frac{1}{4}-\frac{1}{2.19.20}< \frac{1}{4}\)

19 tháng 3 2016

a chứng minh được bài toán tổng quát sau 

2/[(n-1)n(n+1)] = 1/[(n-1)n] - 1/[n(n+1)] 

Áp dụng: 

ta có 2A = 1/(1.2) - 1/ (2.3) +1/(2.3) - 1/(3.4) + ...+ 1/18.19 - 1/19.20 

= 1/(1.2) - 1/(19.20) = [190 - 1] / 19.20 = 189/380 

=> A = 189/ 760 < 1/4

8 tháng 5 2017

Nhận thấy: \(\dfrac{1}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{2}{2\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{2+n-n}{2n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{1}{2}\cdot\left[\dfrac{2+n-n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{2+n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}-\dfrac{n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{n\cdot\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\cdot\left(n+2\right)}\right]\)

\(\Rightarrow A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{18\cdot19\cdot20}\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{1\cdot2}-\dfrac{1}{19\cdot20}\right]\\ =\dfrac{1}{4}-\dfrac{1}{760}< \dfrac{1}{4}\)

Vậy \(A< \dfrac{1}{4}\)

15 tháng 1 2024

quá đỉnh:)