K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2023

`#` `\text{dkhanhqlv}`

`2x^3=x^2+2x-1`

`<=>2x^3-x^2-2x+1=0`

`<=>(2x^3-2x)-(x^2-1)=0`

`<=>2x(x^2-1)-(x^2-1)=0`

`<=>(x^2-1)(2x-1)=0`

`<=>(x+1)(x-1)(2x-1)=0`

`<=>x+1=0` hoặc `x-1=0` hoặc `2x-1=0`

`@TH1:x+1=0<=>x=-1`

`@TH2:x-1=0<=>x=1`

`@TH3:2x-1=0<=>x=0,5`

Vậy tập nghiệm của phương trình đã cho là `S={-1;1;0,5}`

13 tháng 2 2023

2x^3 = x^2 + 2x - 1 

=>2x3 - x2 -2x +1=(x-1).(x+1).(2x-1)

=>x-1=0

=>x=-1

=>x=1

=>x=1/2

22 tháng 8 2016

Bạn ơi câu này có cho điều kiện của x không?

22 tháng 8 2016

k bn ak

26 tháng 4 2021

\(g'=2\left(\sqrt{x+3}\right)^2.\left(\sqrt{x+3}\right)'=2\left(x+3\right).\dfrac{1}{2\sqrt{x+3}}=\sqrt{x+3}\)

\(g'\left(x\right)+\sqrt{2x-1}=3\Leftrightarrow\sqrt{x+3}+\sqrt{2x-1}=3\)

\(DKXD:x\ge\dfrac{1}{2}\)

\(pt\Leftrightarrow x+3+2x-1+2\sqrt{\left(x+3\right)\left(2x-1\right)}=9\)

\(\Leftrightarrow2\sqrt{\left(x+3\right)\left(2x-1\right)}=7-3x\)

\(\Leftrightarrow4\left(2x^2+5x-3\right)=49-42x+9x^2\)

\(\Leftrightarrow x^2-62x+61=0\Leftrightarrow\left[{}\begin{matrix}x=61\left(loai\right)\\x=1\end{matrix}\right.\)

26 tháng 4 2021

g'(x) = \(\sqrt{x+3}\) 

ta có phương trình : \(\sqrt{x+3}\)  + \(\sqrt{2x-1}\) =3 ( ĐK : x\(\ge\)\(\dfrac{1}{2}\))

\(\Leftrightarrow\) x+3 +2x-1 +\(2\sqrt{\left(x+3\right)\left(2x-1\right)}\) = 9

\(\Leftrightarrow\) \(2\sqrt{\left(x+3\right)\left(2x-1\right)}\) = 7-3x

\(\Leftrightarrow\) 4(2x2 +5x -3) = 49 - 42x +9x2 

\(\Leftrightarrow\) x2 - 62x +61 = 0 \(\left\{{}\begin{matrix}x=61\\x=1\end{matrix}\right.\)

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

3 tháng 9 2023

PT: \(\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}=\sqrt{2x-1}-10\) (1) (ĐK: \(x\ge\dfrac{1}{2}\)

Đặt: \(y=\sqrt{2x-1}\) (ĐK: \(y\ge0\)

\(\Leftrightarrow x=\dfrac{y^2+1}{2}\)  

Thay vào (1) ta có: 

\(\sqrt{2\cdot\dfrac{y^2+1}{2}+2y}-\sqrt{2\cdot\dfrac{y^2+1}{2}-2y}=y-10\)

\(\Leftrightarrow\sqrt{y^2+1+2y}-\sqrt{y^2+1-2y}=y-10\)

\(\Leftrightarrow\sqrt{\text{ }y^2+2y+1}-\sqrt{y^2-2y+1}=y-10\)

\(\Leftrightarrow\sqrt{\left(y+1\right)^2}-\sqrt{\left(y-1\right)^2}=y-10\)   

\(\Leftrightarrow\left|y+1\right|-\left|y-1\right|=y-10\)

TH1: Với: \(0\le y< 1\) 

\(\Leftrightarrow y+1-1+y=y-10\)

\(\Leftrightarrow2y-y=-10\)

\(\Leftrightarrow y=-10\left(ktm\right)\)

TH2: \(y\ge1\)

\(\Leftrightarrow y+1-y+1=y-10\)

\(\Leftrightarrow2=y-10\)

\(\Leftrightarrow y=10+2\)

\(\Leftrightarrow y=12\left(tm\right)\)

Mà: y=12

\(\Rightarrow x=\dfrac{12^2+1}{2}=\dfrac{145}{2}\left(tm\right)\) 

Vậy: ...

3 tháng 9 2023

Xem lại bài nhé 

24 tháng 1 2022

1. \(x+3m>3+mx.\Leftrightarrow x+3m-3-mx>0.\\ \Leftrightarrow\left(1-m\right)x+3m-3>0.\\ \Leftrightarrow\left(1-m\right)x>-3m+3.\left(1\right)\)

+) Nếu \(1-m=0.\Leftrightarrow m=1.\) Thay vào (1):

\(0x>-3.1+3.\Leftrightarrow0x>0\) (vô lý).

\(\Rightarrow\) Bất phương trình vô nghiệm.

+) Nếu \(1-m>0.\Leftrightarrow m< 1.\)

Khi đó (1) có nghiệm: \(x>\dfrac{-3m+3}{1-m}.\Leftrightarrow x>\dfrac{-3\left(m-1\right)}{-\left(m-1\right)}.\Leftrightarrow x>3.\)

+) Nếu \(1-m< 0.\Leftrightarrow m>1.\)

Khi đó (1) có nghiệm: \(x< \dfrac{-3m+3}{1-m}.\Leftrightarrow x< 3.\)

24 tháng 1 2022

1/ x=3 , m=1

bl : tìm nghiệm , tạo khoảng thử nghiệm

2/ \(m=\pm\sqrt{-\dfrac{25-2x}{25-x}}\)

\(x=\dfrac{25\left(1+m^2\right)}{2+m^2}\)

3/ x=-m+1

m = \(\left\{{}\begin{matrix}3\\-x+1\end{matrix}\right.\)

4/ m= \(\left\{{}\begin{matrix}x-3\\3\end{matrix}\right.\)

x= m+3 

9 tháng 2 2020

a) \(3+2,25x+2,6=2x+5+0,4x\)

\(\Leftrightarrow3+2,25x+2,6-2x-5-0,4x=0\)

\(\Leftrightarrow0,6-0,15x=0\)

\(\Leftrightarrow x=4\)

Vậy tập nghiệm của phương trình là : \(S=\left\{4\right\}\)

b) \(5x+3,48-2,35x=5,38-2,9x+10,42\)

\(\Leftrightarrow5x+3,48-2,35x-5,38+2,9x-10,42=0\)

\(\Leftrightarrow5,55x-12,32=0\)

\(\Leftrightarrow x=2,21981982\)

Vậy tập nghiệm của phương trình là : \(S=\left\{2,21981982\right\}\)

c) \(3\left(2,2-0,3x\right)=2,6+\left(0,1x-4\right)\)

\(\Leftrightarrow3\left(2,2-0,3x\right)-2,6-\left(0,1x-4\right)=0\)

\(\Leftrightarrow6,6-0,9x-2,6-0,1x+4=0\)

\(\Leftrightarrow8-x=0\)

\(\Leftrightarrow x=8\)

Vậy tập nghiệm của phương trình là : \(S=\left\{8\right\}\)

d) \(3,6-0,5\left(2x+1\right)=x-0,25\left(2-4x\right)\)

\(\Leftrightarrow3,6-0,5\left(2x+1\right)-x+0,25\left(2-4x\right)=0\)

\(\Leftrightarrow3,6-x-0,5-x+0,5-x=0\)

\(\Leftrightarrow3,6-3x=0\)

\(\Leftrightarrow x=1,2\)

Vậy tập nghiệm của phương trình là : \(S=\left\{1,2\right\}\)