Có tam giác MNP vuông tại M,tia phân giác của góc N cắt MP tại Q.Trên tia NP lấy điểm K sao cho NK=NM
Cm a,tam giác NQK cân
B,tia QN là tia phân giác của góc MQK
c,so sánh MQ=QP
đ,so sánh NQ=NP
Anh em sky ơi giúp mk vs thương lắm cơ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác MNF và tam giác KNF ta có:
MN = NK
\(\widehat{MNF}=\widehat{KNF}\)
NF chung
--> \(\Delta MNF=\Delta KNF\)̣̣\((c.g.c)\)
b. Ta có : \(\Delta MNF=\Delta KNF\)
--> \(\widehat{NMF=}\widehat{NKF}=90^0\)
Xét tam giác NPD có:
\(PM\perp ND\)
\(DK\perp PN\)
PM cắt DK tại F
--> F là trực tâm của tam giác NPD
--> \(NF\perp PD\)
chưa học trực tâm đâu :))
GT | △MNP (M = 90o). PNF = FNM = PNM/2 ; (F MP) K NP: NK = NM. {D} = KF ∩ NM |
KL | a, △NFM = △NFK b, NF ⊥ PD |
Bg:
a, Xét △NFM và △NFK
Có: MN = NK (gt)
FNM = PNF (gt)
NF là cạnh chung
=> △MNF = △KNF (c.g.c)
b, Gọi { I } = NF ∩ PD
Vì △MNF = △KNF (cmt) => MF = KF (2 cạnh tương ứng)
Và FMN = FKN (2 góc tương ứng)
Mà FMN = 90o
=> FKN = 90o
Xét △PFK vuông tại K và △DFM vuông tại M
Có: KF = FM (cmt)
PFK = DFM (2 góc đối đỉnh)
=> △PFK = △DFM (cgv-gn)
=> PK = DM (2 cạnh tương ứng)
Ta có: NP = PK + KN và DN = DM + MN
Mà PK = DM (cmt) ; NK = MN (gt)
=> NP = DN
Xét △IPN và △IDN
Có: NP = DN (cmt)
ENI = IND (gt)
IN là cạnh chung
=> △IPN = △IDN (c.g.c)
=> PIN = DIN (2 góc tương ứng)
Mà PIN + DIN = 180o (2 góc kề bù)
=> PIN = DIN = 180o/2 = 90o
=> IN ⊥ PD
Mà { I } = NF ∩ PD
=> NF ⊥ PD (đpcm)
a) 6,9cm
b) góc DEF<góc DFE
c) xét tam giác DEF và tam giác DEK có:
KD=DF
GÓC KDE=góc EDF
DE cạnh chung
Do đó tam giác DEF= tam giác DEK
bài này dễ òm
a) Tam giác DEF vuông tại D có:
EF2=DE2+DF2 (định lý pytago)
82=DE2+42
=> DE2=82-42=64-16=48(cm)
=>DE2= căn 48 (xấp xỉ) 6.9
b) Ta có: DE<EF (6.9<8)
=> góc E > góc F (quan hệ góc và cạnh đối diện trong 1 tam giác)
=> góc DEF > góc DFE
c) Xét tam giác DEF và tam giác DEK, có: DK=DF( vì D là trung điểm )
ED là cạnh chung
=> tam giác DEF = tam giác DEK (2 cạnh góc vuông)