cho\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
chứng minh \(a^2\)=b.c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a,b,c>0 .
áp dụng bđt cosi,ta có:
b.c/a+c.a/b>_2c (1)
c.a/b+a.b/c>_2a (2)
a.b/c+b.c/a>_2b ((3)
Cộng (1),,(2),,(3) vế theo vế ,ta được:
2.(b.c/a+c.a/b+a.b/c)>_ 2.(a+b+c)
=>b.c/a+c.a/b+a.b/c>_ a+b+c (đpcm)
Ta có:\(a^2=b.c\Rightarrow\frac{a}{c}=\frac{b}{a}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{a^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{a^2}=\frac{a^2+b^2}{c^2+a^2}=\frac{a^2-b^2}{c^2-a^2}\)
Vì \(\frac{a^2+b^2}{c^2+a^2}=\frac{a^2-b^2}{c^2-a^2}\Rightarrow\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+a^2}{c^2-a^2}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)
Vậy \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
Áp dụng \(x^2+y^2+z^2\ge xy+yz+zx\)Dấu "=" xảy ra khi x=y=z
\(\Leftrightarrow b^2c^2+c^2a^2+a^2b^2\ge abc\left(a+b+c\right)\)
\(\Leftrightarrow\frac{b^2c^2+c^2a^2+a^2b^2}{abc}\ge a+b+c\)
\(\frac{b.c}{a}+\frac{c.a}{b}+\frac{a.b}{c}\ge a+b+c\)
Dấu "=" xảy ra khi: a=b=c
Kẻ đg cao BH
a) + \(sinA=\frac{BH}{AB}=\frac{BH}{c}\)
+ \(S_{ABC}=\frac{1}{2}BH\cdot AC=\frac{BH\cdot AC\cdot AB}{2AB}\)
\(=\frac{bc\cdot sinA}{2}\)
b) + \(sinC=\frac{BH}{BC}=\frac{BH}{a}\)
\(\Rightarrow\frac{sinA}{sinC}=\frac{\frac{BH}{c}}{\frac{BH}{a}}=\frac{a}{c}\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\)
+ Tương tự : \(\frac{a}{b}=\frac{sinA}{sinB}\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}\)
Do đó: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\)
đặt \(\frac{a}{b}=\frac{c}{a}=k\Rightarrow a=bk;c=ak\)
suy ra:
\(\frac{a+b}{a-b}=\frac{bk+b.1}{bk-b.1}=\frac{b.\left(k+1\right)}{b.\left(k-1\right)}=\frac{k+1}{k-1}\)
\(\frac{c+a}{c-a}=\frac{ak+a.1}{ak-a.1}=\frac{a.\left(k+1\right)}{a.\left(k-1\right)}=\frac{k+1}{k-1}\)
Vậy \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)
\(\Leftrightarrow a=bk;c=dk\)
\(\frac{a}{a-b}=\frac{bk}{bk-b}\)
\(=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
=>\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
=> \(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)( đpcm )
ta có a+b/a-b = a+c/c-a
=> (a+b)(c -a) = ( a-b)(a+c)
=> ac - a^2 + bc - ab = a^2 + ac -ab - bc
=> ac - a^2 + bc - ab - a^2 - ac + ab + bc = 0
=> -2a ^2 + 2bc = 0
=> 2bc = 2 a^2
=> bc = a^2
=> ĐPCM
(a+b)(c-a)=(a-b)(c+a)
<=> ac-a2+bc-ab=ac+a2-bc-ab
<=> -2a2= -2bc
<=>a2=b.c