K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

\(A=x^2-6x+10\)

\(A=x^2-6x+3^2-3^2+10\)

\(A=\left(x-3\right)^2+1\ge1\)

Vậy: \(MinA=1\Leftrightarrow\left(x-3\right)^2=0\)

                             \(\Leftrightarrow x=3\)

20 tháng 3 2017

A = x2 - 6x + 10

= (x - 3)2 + 1 >= 1

=> GTNN = 1

5 tháng 7 2023

10?

5 tháng 7 2023

\(C=x^2+y^2-x+6x+10\\ =x^2+5x+y^2+10\\ =x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}+y^2+\dfrac{15}{4}\\ =\left(x+\dfrac{5}{2}\right)^2+y^2+\dfrac{15}{4}\)

Mà \(\left(x+\dfrac{5}{2}\right)^2+y^2\ge0\forall x,y\)

\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+y^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{5}{2}=0\Leftrightarrow x=-\dfrac{5}{2}\\y=0\end{matrix}\right.\)

Vậy GTNN của C là \(\dfrac{15}{4}\) khi x = \(-\dfrac{5}{2}\) và y = 0

25 tháng 1 2019

18 tháng 7 2021

có vài chỗ ko thấy

 

30 tháng 1 2018

A+1 = x^2+6x+9/x^2+1 = (x+3)^2/x^2+1 >= 0

=> A >= -1

Dấu "=" xảy ra <=> x+3=0 <=> x=-3

Vậy GTNN của A = -1 <=> x=-3

Tk mk nha

25 tháng 5 2017

a) \(P=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\)

\(MinP=4\Leftrightarrow x-1=0\Rightarrow x=1\)

b) \(Q=2x^2-6x\)

\(=2\left(x^2-3x\right)\)

\(=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)

\(=2\left(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right)\)

\(=-\frac{9}{2}-2\left(x-\frac{3}{2}\right)^2\le\frac{-9}{2}\)

\(MinQ=\frac{-9}{2}\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

9 tháng 8 2016

M=x^2+y^2-x+6y+10

M=(x^2-x+1/4)+(y^2+6y+9)+3/4

M=(x-1/2)^2+(y+3)^2+3/4

\(minM=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

15 tháng 1 2018

Ta có: A =  x 2 - 6 x + 11  =  x 2 - 2 . 3 x + 9 + 2  = x - 3 2 + 2

Vì x - 3 2  ≥ 0 nên  x - 3 2  + 2 ≥ 2

Suy ra: A ≥ 2.

A = 2 khi và chỉ khi x - 3 = 0 suy ra x = 3

Vậy A = 2 là giá trị nhỏ nhất của biểu thức tại x =3.

6 tháng 1 2022

\(M=x^2-6x+25\\ \Rightarrow M=\left(x^2-6x+9\right)+16\\ \Rightarrow M=\left(x-3\right)^2+16\ge16\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)

Vậy \(M_{min}=16\Leftrightarrow x=3\)

6 tháng 1 2022

GTNN của M = 16 khi x = 3

NV
19 tháng 5 2021

\(P=x^2-6x+9+2\)

\(P=\left(x-3\right)^2+2\)

Do \(\left(x-3\right)^2\ge0\) ;\(\forall x\)

\(\Rightarrow P\ge0+2\Rightarrow P\ge2\)

Vậy \(P_{min}=2\) khi \(x=3\)

16 tháng 10 2021

\(A=x^2-6x+15=\left(x^2-6x+9\right)+6\)

\(=\left(x-3\right)^2+6\ge6\)

\(minA=6\Leftrightarrow x=3\)

16 tháng 10 2021

A=x²-2x3+3²+6

A=(x-3)²+6

Vì (x-3)² luôn > hoặc = 0 với mọi x

=> (x-3)²+6 > hoặc = 6

Vậy GTNN = 6 

Dấu "=" xảy ra khi x-3=0

X=3