Cho hai số x,y thỏa mãn \(x^3+y^3=2\). Chứng minh rằng: \(x+y\le2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopxky:
\(\left(x^3+y^3\right)\left(x+y\right)\ge\left(x^2+y^2\right)^2\)
\(\Leftrightarrow2\left(x+y\right)\ge\left(x^2+y^2\right)^2\)
\(\Rightarrow4\left(x+y\right)^2\ge\left(x^2+y^2\right)^4\) \(\left(1\right)\)
Áp dụng BĐT AM-GM:
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) \(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) \(\Rightarrow8\left(x^2+y^2\right)\ge\left(x^2+y^2\right)^4\)
\(\Rightarrow8\ge\left(x^2+y^2\right)^3\)
\(\Rightarrow2\ge x^2+y^2\)hay \(x^2+y^2\le2\)
Áp dụng bất đẳng thức Cô si cho ba số dương ta có
x^3+x^3+1\ge3\sqrt[3]{x^3.x^3.1}\Leftrightarrow2x^3+1\ge3x^2x3+x3+1≥33x3.x3.1⇔2x3+1≥3x2, đẳng thức xảy ra khi và chỉ khi x=1x=1.
Tương tự, 2y^3+1\ge3y^22y3+1≥3y2. Cộng theo vế hai bất đẳng thức nhận được ta có
2\left(x^3+y^3\right)+2\ge3\left(x^2+y^2\right)2(x3+y3)+2≥3(x2+y2)
Sử dụng giả thiết x^3+y^3=2x3+y3=2 suy ra đpcm. Đẳng thức xảy ra khi và chỉ khi x=y=1x=y=
Ta có : xy \(\le\)\(\frac{\left(x+y\right)^2}{4}\)hay xy \(\le\)1 ( 1 ) . Dấu " = " xảy ra \(\Leftrightarrow\)x = y = 1
\(2xy\left(x^2+y^2\right)\le\frac{\left(2xy+x^2+y^2\right)^2}{4}=\frac{\left(x+y\right)^4}{4}=4\)( 2 )
Dấu " = " xảy ra \(\Leftrightarrow\)x = y = 1
Nhân ( 1 ) với ( 2 ) ta được : \(2x^2y^2\left(x^2+y^2\right)\le4\)\(\Rightarrow\)\(x^2y^2\left(x^2+y^2\right)\le2\)
Dấu " = " xảy ra \(\Leftrightarrow\)x = y = 1
vì trong 3 số x,y,z có ít nhất là 2 số cùng dấu
giả sử \(x,y\le0\)\(\Rightarrow z=-\left(x+y\right)\ge0\)
Mà \(-1\le x,y,z\le1\)nên \(x^2\le\left|x\right|;y^4\le\left|y\right|;z^6\le\left|z\right|\)
\(\Rightarrow x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=-x-y+z=-\left(x+y\right)+z=2z\le2\)
Dấu " = " xảy ra chẳng hạn x = 0 ; y = -1; z = 1
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(x^3+y^3)(x+y)\geq (x^2+y^2)^2$
$\Leftrightarrow 2(x+y)\geq (x^2+y^2)^2$
$\Rightarrow 4(x+y)^2\geq (x^2+y^2)^4(1)$
Áp dụng BĐT AM-GM: $2(x^2+y^2)\geq (x+y)^2(2)$
Từ $(1);(2)\Rightarrow 8(x^2+y^2)\geq (x^2+y^2)^4$
$\Rightarrow 8\geq (x^2+y^2)^3$
$\Rightarrow 2\geq x^2+y^2$ (đpcm)
(Nó có hơi dài dòng)
Cho 3 số x,y,z thỏa mãn: x/2020=y/2021=z/2022.Chứng minh rằng: (x-z)^3 =
(x-z)^3= (2020 - 2022)^3 = -8
8(x-y)^2.(y-z)= 8(2020 - 2021)^2 . (2021 - 2022) = -8.
Vì (x-z)^3 = -8
8(x-y)^2.(y-z) = -8
==> (x-z)^3 = 8(x-y)^2.(y-z)