Cho a>b>0 . So sánh : a=\(\frac{1+a}{1+a+a^2}\) và b=\(\frac{1+b}{1+b+b^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: a < b => a + 1 < b + 1
b) Ta có: a < b => a - 2 < b - 2
\(A=\frac{1+a+a^2+...+a^{n-1}}{1+a+a^2+...+a^n}=1+\frac{1}{a^n}\)
\(B=\frac{1+b+b^2+...+b^{n-1}}{1+b+b^2+...+b^n}=1+\frac{1}{b^n}\)
Vì \(a>b\) nên \(1+\frac{1}{a^n}< 1+\frac{1}{b^n}\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Áp dụng hằng đẳng thức \(a^n-1=\left(a-1\right)\left(a^{n-1}+a^{n-2}+....+a^2+a+1\right)\)
để thu gọn biểu thức rồi lập hiệu A - B để so sánh
Ta có: \(a>b>0\)
\(\Rightarrow a^2>b^2\)
\(\Rightarrow a^2+a>b^2+b\)
\(\Rightarrow a^2+a+1>b^2+b+1\)
\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)
\(\Rightarrow x< y\)
\(x=\frac{a+1}{a^2+a+1}=1-\frac{a^2}{a+a+1}\)
\(y=\frac{b+1}{1+b+b^2}=1-\frac{b^2}{1+b+b^2}\)
Do \(\frac{a^2}{a^2+a+1}>\frac{b^2}{b^2+b+1}\Rightarrow x< y\)
\(\frac{a^2}{1+a+a^2}\)
\(\frac{1}{1+a}\)
\(\frac{b^2}{1+b+b^2}\)=\(\frac{1}{1+b}\)
vì a>b nên \(\frac{a^2}{1+a+a^2}\)>\(\frac{b^2}{1+b+b^2}\)
1)
\(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)
\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)
mà ab = ab; ac > bc ( vì a > b )
=> \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)
Xét 3 trường hợp :
+) Nếu b > a thì \(\frac{a}{b}=\frac{b-m}{b}=\frac{b}{b}-\frac{m}{b}=1-\frac{m}{b}\)
\(\frac{a+1}{b+1}=\frac{b-m+1}{b+1}=\frac{b+1-m}{b+1}=\frac{b+1}{b+1}-\frac{m}{b+1}=1-\frac{m}{b+1}\)
Vì \(\frac{m}{b}>\frac{m}{b+1}\)nên \(1-\frac{m}{b}< 1-\frac{m}{b+1}\)hay \(\frac{a}{b}< \frac{a+1}{b+1}\)
+) Nếu a = b thì \(\frac{a}{b}=1\)
\(\frac{a+1}{b+1}=1\)nên\(\frac{a}{b}=\frac{a+1}{b+1}\)
+) Nếu a > b thì \(\frac{a}{b}=\frac{b+m}{b}=\frac{b}{b}+\frac{m}{b}=1+\frac{m}{b}\)
\(\frac{a+1}{b+1}=\frac{b+m+1}{b+1}=\frac{b+1}{b+1}+\frac{m}{b+1}=1+\frac{m}{b+1}\)
Vì \(\frac{m}{b}>\frac{m}{b+1}\)nên \(1+\frac{m}{b}>1+\frac{m}{b+1}\)hay \(\frac{a}{b}>\frac{a+1}{b+1}\)
Ta có :
\(\frac{a}{b}=\frac{a\left(b+1\right)}{b\left(b+1\right)}=\frac{ab+a}{b^2+b}\)
\(\frac{a+1}{b+1}=\frac{b\left(a+1\right)}{b\left(b+1\right)}=\frac{ab+b}{b^2+b}\)
Từ 2 ý trên , ta xét từng trường hợp sau :
a < b thì \(\frac{a}{b}< \frac{a+1}{b+1}\)
a > b thì \(\frac{a}{b}>\frac{a+1}{b+1}\)
a = b thì \(\frac{a}{b}=\frac{a+1}{b+1}\)