Cho góc xOy.Lấy điểm A trên Ox,lấy điểm B trên Oy sao cho OA=OB.Gọi K là giao điểm của AB với tia phân giác của góc xOy
CM:a)tam giác OAK=tam giác OBK
b)AK=BK
c)OK vuông góc AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tam giác: OAK và OBK, có:
OA = OB (gt)
góc AOK = góc BOK (OK là phân giác góc xOy, gt)
OK là cạnh chung
=> Tam giác OAK = tam giác OBK (c.g.c) (đpcm)
b) Theo câu a:
=> AK = BK (2 cạnh tương ứng) (đpcm)
c) Theo câu a:
=> góc OKA = góc OKB (2 góc tương ứng)
mà OKA kề bù với OKB
=> OKA + OKB = 1800
=> OKA = OKB = 1800 : 2 = 900
=> OK vuông góc với AB (đpcm)
lớp 7 à?Học tam giác cân rồi đúng không?
ta cm đc tam giác AOB cân tại O,mà OK là tia fân giác của góc O(1)
=>OK là đường trung tuyến ứng với AB
=>KA=KB
b,
(1)=>OK là đường cao ứng vs AB
=>OK vuông góc vs AB
a: ΔOAB cân tại O
mà OK là phân giác
nên K là trung điểm của AB
=>KA=KB
b: ΔOAB cân tại O
mà OK là phân giác
nên OK vuông góc AB
a) \(\Delta AKO\)và \(\Delta BKO\)có:
OA = OB (theo GT)
\(\widehat{AOK}=\widehat{BOK}\)(Vì OK là tia phân giác của \(\widehat{xOy}\))
OK: cạnh chung
Do đó: \(\Delta AKO=\Delta BKO\)(c.g.c)
Suy ra: AK = KB (cặp cạnh tương ứng)
b) Ta có: \(\widehat{AKO}+\widehat{BKO}=180^o\)(vì là hai góc kề bù)
Mà \(\widehat{AKO}=\widehat{BKO}\)(do \(\Delta AKO=\Delta BKO\))
Do đó: \(\widehat{AKO}=\frac{180^o}{2}=90^o\)
Suy ra: \(OK\perp AB\)
c) \(\Delta HOK\)và \(\Delta IOK\)có:
\(\widehat{KHO}=\widehat{KIO}=90^o\)(do \(KH\perp Ox,KI\perp Oy\))
OK: cạnh chung
\(\widehat{AOK}=\widehat{BOK}\)(Vì OK là tia phân giác của \(\widehat{xOy}\))
Do đó: \(\Delta HOK=\Delta IOK\)(cạnh huyền, góc nhọn)
Suy ra \(\widehat{HKO}=\widehat{IKO}\)(cặp góc tương úng)
Mà tia KO nằm giữa hai tia KH và KI
Nên KO là tia phân giác của \(\widehat{HKI}\)
bài này giống bài mk vừa giải
bạn xem tại đây: http://olm.vn/hoi-dap/question/112315.html