K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2016

Ta có:    \(A=7+7^2+7^3+.....+7^{4n}\)                      \(\left(n\in N\right)\)

      \(\Leftrightarrow A=7\left(1+7+7^2+7^3\right)+......+7^{4n-3}\left(1+7+7^2+7^3\right)\)

      \(\Leftrightarrow A=7.400+7^5.400+....+7^{4n-3}.400\)

      \(\Leftrightarrow\left(7+7^5+....+7^{4n-3}\right).400\) chia hết cho 400

Vậy A chia hết cho 400

10 tháng 6 2016

Bạn Nguyễn Đức Tiến có thể viết rõ hộ mình được không ạ? Mình chưa hiểu

7 tháng 1 2019

\(D=\left(7^1+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)

\(\Rightarrow D=7^1.\left(1+7+7^2+7^3\right)+7^5.\left(1+7+7^2+7^3\right)+...+7^{4n-3}.\left(1+7+7^2+7^3\right)\)

\(\Rightarrow D=7^1.400+7^5.400+...+7^{4n-3}.400=400.\left(7^1+7^5+...+7^{4n-3}\right)\)

Vậy D chia hết cho 400

25 tháng 11 2016

\(7^1+7^2+...+7^{4n-1}+7^{4n}\)

\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)

\(=7^1\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)

\(=7^1\cdot400+...+7^{4n-3}\cdot400\)

\(=400\left(7^1+...+7^{4n-3}\right)⋮400\)

17 tháng 1 2017

71 + 72 + 73 + 74 + ... + 74n - 1 + 74n

= (71 + 72 + 73 + 74) + (75 + 76 + 77 + 78) + ... + (74n - 3 + 74n - 2 + 74n - 1 + 74n)

= 71 . (1 + 7 + 72 + 73) + 75 . (1 + 7 + 72 + 73) + ... + 74n - 3 . (1 + 7 + 72 + 73)

= 71 . 400 + 75 . 400 + ... + 74n - 3 . 400

= 400 . (71 + 75 + ... + 74n - 3)

Vì 400 \(⋮\)400 nên suy ra 400 . (71 + 75 + ... + 74n - 3) \(⋮\)400

Vậy ....

~.~

29 tháng 3 2016

A=(7+7^2+7^3+7^4)+(7^5+7^6+7^7+7^8)+........+(7^4n-3 +7^4n-2 +7^4n-1 +7^4n)

A=7.(1+7+7^2+7^3)+7^5(1+7+7^2+7^3)+..........+7^4n-3.(1+7+7^2+7^3)

A=7.400+7^5.400+.......7^4n-3.400

Vậy A chia hết cho 400