Tỉ số giữa bán kính của đường tròn ngoại tiếp và bán kính của đường tròn nội tiếp tam giác vuông có góc nhọn bằng \(30^0\) là
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
KS
4 tháng 8 2018
Gọi tam giác đó là ABC vuông tại A có góc ABC bằng 30 độ. Gọi R là bán kính đường tròn ngoại tiếp. r là bán kính đường tròn nội tiếp
Ta có: AC=BC.sin30==R
AB=BC.cos30=
Lại có: r==
Gọi cạnh huyền là a, cạnh đối diện góc 300 là c, cạnh còn lại là b
Tính được \(b=c.\cot30=c\sqrt{3}\) nên \(a=\sqrt{b^2+c^2}=\sqrt{\left(c\sqrt{3}\right)^2+c^2}=2c\)
Bán kính đường tròn ngoại tiếp là R = a/2 = 2c/2 = c
Bán kính đường tròn nội tiếp là
\(r=\frac{S}{p}=\frac{bc}{2p}=\frac{bc}{a+b+c}=\frac{c^2\sqrt{3}}{2c+c\sqrt{3}+c}=\frac{c^2\sqrt{3}}{\left(3+\sqrt{3}\right)c}=\frac{\left(\sqrt{3}-1\right)c}{2}\)
Do đó \(\frac{R}{r}=c.\frac{2}{\left(\sqrt{3}-1\right)c}=1+\sqrt{3}\)
bạn thi vio à kết bạn vs mk nhé