1Tìm x biết:
-5/x-3 < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
\(A< \dfrac{3}{5}\Rightarrow\dfrac{3}{5}-A>0\Rightarrow\dfrac{3}{5}-\dfrac{\sqrt{x}-3}{\sqrt{x}-1}>0\)
\(\Rightarrow\dfrac{3\left(\sqrt{x}-1\right)-5\left(\sqrt{x}-3\right)}{5\left(\sqrt{x}-1\right)}>0\Rightarrow\dfrac{12-2\sqrt{x}}{5\left(\sqrt{x}-1\right)}>0\)
\(\Rightarrow\dfrac{2}{5}.\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\Rightarrow\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}6-\sqrt{x}>0\\\sqrt{x}-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}6-\sqrt{x}< 0\\\sqrt{x}-1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}1< x< 36\\\left\{{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\left(l\right)\end{matrix}\right.\)
\(\Rightarrow1< x< 36\)
\(=>A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
để \(A< \dfrac{3}{5}< =>\dfrac{\sqrt{x}-3}{\sqrt{x}-1}< \dfrac{3}{5}\)
\(< =>\dfrac{5\left(\sqrt{x}-3\right)-3\left(\sqrt{x}-1\right)}{5\left(\sqrt{x}-1\right)}< 0\)
\(< =>\dfrac{2\sqrt{x}-12}{5\left(\sqrt{x}-1\right)}< 0\)
\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}2\sqrt{x}-12>0\\5\left(\sqrt{x}-1\right)< 0\end{matrix}\right.\\\left[{}\begin{matrix}2\sqrt{x}-12< 0\\5\left(\sqrt{x}-1\right)>0\end{matrix}\right.\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\\\left[{}\begin{matrix}x< 36\\x>1\end{matrix}\right.\end{matrix}\right.=>1< x< 36\left(tm\right)\)
=>10x+15y=5m và -10x+2y=-2
=>17y=5m-2 và -5x+y=-1
=>y=5/17m-2/17 và 5x-y=1
=>y=5/17m-2/17 và 5x=1+y=5/17m+15/17
=>y=5/17m-2/17 và x=1/17m+5/17
x>0; y>0
=>5m-2>0 và m+5>0
=>m>2/5
1) Để \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\) thì phải có 1 số nhỏ hơn 0 hoặc 3 số nhỏ hơn 0
TH1 : có 1 số nhỏ hơn 0
Vì \(x^2-1>x^2-4>x^2-7>x^2-10\)
Nên \(\hept{\begin{cases}x^2-1;x^2-4;x^2-7>0\\x^2-10< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-7>0\\x^2-10< 0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2>7\\x^2< 10\end{cases}\Leftrightarrow7< x^2< 10\Rightarrow x^2=9\Rightarrow x=\pm3}\)
TH2: 3 số nhỏ hơn 0
Vì \(x^2-1>x^2-4>x^2-7>x^2-10\)
Nên \(\hept{\begin{cases}x^2-1>0\\x^2-4;x^2-7;x^2-10< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}\Rightarrow1< x^2< 4}\) (loại vì x là số nguyên)
Vậy \(x=\pm3\)
2) \(A=\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\)
\(=\left|x-a\right|+\left|x-d\right|+\left|x-c\right|+\left|x-b\right|\)
\(=\left|x-a\right|+\left|d-x\right|+\left|x-c\right|+\left|b-x\right|\)
\(\ge\left|x-a+d-x\right|+\left|x-c+b-x\right|=\left|d-a\right|+\left|b-c\right|=c+d-a-b\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-a\right)\left(d-x\right)\ge0\\\left(x-c\right)\left(b-x\right)\ge0\end{cases}\Rightarrow b\le x\le c}\)
Vậy GTNN của A là \(c+d-a-b\) tại \(b\le x\le c\)
cai nay thi nhieu