K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2019

Không mất tính tổng quát. Giả sử: 0< a < b < c ; a, b, c là các số tự nhiên. Vì 1/ a + 1/b + 1/c  = 4/5 <1 => a; b ; c > 1

=> \(\frac{1}{a}>\frac{1}{b}>\frac{1}{c}\)

=> \(\frac{4}{5}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{1}{a}+\frac{1}{a}+\frac{1}{a}=\frac{3}{a}\)

=> \(\frac{4}{5}< \frac{3}{a}\)

=> \(a=3\) hoặc  2 

TH1: Với a = 3

=> \(\frac{1}{3}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Rightarrow\frac{1}{b}+\frac{1}{c}=\frac{7}{15}< \frac{1}{2}\)

=> \(\frac{7}{15}=\frac{1}{b}+\frac{1}{c}< \frac{2}{b}\); b > 2

=> \(\frac{7}{15}< \frac{2}{b}\); b > 2

=>  b = 3; hoặc b = 4

+) Với b = 4 => \(\frac{1}{4}+\frac{1}{c}=\frac{7}{15}\)

=> \(\frac{1}{c}=\frac{13}{60}\)=> \(c=\frac{60}{13}\) loại vì c là số tự nhiên.

+) Với b = 3 => \(\frac{1}{3}+\frac{1}{c}=\frac{7}{15}\)

=> \(\frac{1}{c}=\frac{2}{15}\) loại vì c là số tự nhiên.

TH2: a = 2

=> \(\frac{1}{2}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)

=> \(\frac{1}{b}+\frac{1}{c}=\frac{3}{10}< \frac{1}{3}\)

=> \(\frac{3}{10}=\frac{1}{b}+\frac{1}{c}< \frac{2}{b};b>3\)

=> \(\frac{3}{10}< \frac{2}{b};b>3\)

=> b = 4 hoặc b = 5 hoặc b = 6

+) Với b = 4 có: \(\frac{1}{4}+\frac{1}{c}=\frac{3}{10}\Rightarrow c=20\)( thử lại thỏa mãn)

+) Với b = 5  có: \(\frac{1}{5}+\frac{1}{c}=\frac{3}{10}\Rightarrow c=10\)( thử lại thỏa mãn)

+) Với b = 6 có: \(\frac{1}{6}+\frac{1}{c}=\frac{3}{10}\Rightarrow\frac{1}{c}=\frac{2}{15}\)loại

Vậy bộ 3 số tự nhiên cần tìm là : ( 2; 4; 20) ; ( 2; 5; 10 ) và các hoán vị.

2 tháng 12 2019

bang 3 day minh lam roi

25 tháng 2 2020

c) Câu hỏi của Yumani Jeng - Toán lớp 6 - Học toán với OnlineMath

21 tháng 2 2017

2) 1/a + 1/b + 1/c = \(\frac{bc+ac+ab}{abc}\)

Nếu abc = 5 => a = 0; c = 1 và b = 4

Nếu abc = 10 hoặc 15 hoặc 20 thì .....

21 tháng 2 2017

Tìm  bộ ba số tự nhiên khác không sao cho:

a+b+c=0

và 1/a+1/b+1/c=2 

9 tháng 2 2023

a)

\(A=5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\)

\(5^2.A=5^2.\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)\)

\(25A=5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\)

\(A+25A=\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)+\left(5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\right)\)

\(26A=5^{22}-1\)

\(A=\dfrac{5^{22}-1}{26}\).

b)

\(26A+1=5^n\)

\(\Leftrightarrow\left(5^{52}-1\right)+1=5^n\)

\(\Leftrightarrow5^{52}=5^n\)

\(\Rightarrow n=52\).

c)

\(A=\left(5^{50}-5^{48}\right)+\left(5^{46}-5^{44}\right)+...+\left(5^6-5^4\right)+\left(5^2-1\right)\)

\(=5^{48}.\left(5^2-1\right)+5^{44}.\left(5^2-1\right)+...+5^4.\left(5^2-1\right)+1.\left(5^2-1\right)\)

\(=5^2.24.\left(5^{46}+5^{42}+...+5^2\right)+24\)

\(=25.4.6.\left(5^{46}+5^{42}+...+5^2\right)+24\)

\(=100.6.\left(5^{46}+5^{42}+...+5^2\right)+24⋮100\)

\(\Rightarrow A⋮100\).