K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

Trên tia đối của tia MA , lấy D sao cho MA=MD

Xét 2 tg MAB và tg MDC , ta có : MA=MD ; MB=MC(vì M là trung điểm của BC) ; MAB=CMD(vì đối đỉnh)

->tg MAB =tg MDC (c.g.c) -> AB=CD (2 cạnh tương ứng) và MAB = CDM (2 góc tương ứng)

Ta có AB<AC(gt) -> CD<AC

Trong tg ACD , vì AC<CD ->CDM<CAM ( quan hệ giữa cạnh với góc đối diện) -> BAM<CAM

a: Xét ΔAMB vuông tại M và ΔANC vuông tạiN có

góc A chung

=>ΔAMB đồng dạng vơi ΔANC

=>AM/AN=AB/AC

=>AM*AC=AB*AN; AM/AB=AN/AC

b: Xét ΔAMN và ΔABC có

AM/AB=AN/AC
góc A chung

=>ΔAMN đồng dạng với ΔABC

=>góc AMN=góc ABC

Gọi M là trung điểm của BC, D là chân đường phân giác kẻ từ A xuống BC

=>A,G,M thẳng hàng và A,I,D thẳng hàng

BM=CM=BC/2=7,5cm

AD là phân giác

=>BD/AB=CD/AC
=>BD/4=CD/6=15/10=1,5

=>BD=6cm

=>MD=1,5cm

IG//DM

=>IG/DM=AI/AD=2/3

=>IG=2/3DM=1cm

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Lời giải:
a. Xét tam giác $ABD$ và $AED$ có:

$AB=AE$ (gt)

$\widehat{BAD}=\widehat{EAD}$ (tính chất tia phân giác)

$AD$ chung

$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)

b.

Từ tam giác bằng nhau phần a suy ra $BD=ED$ và $\widehat{ABD}=\widehat{AED}$

$\Rightarrow 180^0-\widehat{ABD}=180^0-\widehat{AED}$

$\Rightarrow \widehat{DBM}=\widehat{DEC}$

Xét tam giác $DBM$ và $DEC$ có:

$\widehat{BDM}=\widehat{EDC}$ (đối đỉnh)

$BD=ED$ (cmt)

$\widehat{DBM}=\widehat{DEC}$ (cmt)

$\Rightarrow \triangle DBM=\triangle DEC$ (g.c.g)

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Hình vẽ:

25 tháng 11 2016

A D K B C 1 2

Giải:
Ta có: AB = AC

           AB = AK

           AC = AD

=> AD = AK (1)

Xét \(\Delta ABK\) có: \(\widehat{BAK}=\widehat{BAC}+\widehat{A_2}=\widehat{BAC}+90^o\)

Xét \(\Delta ACD\) có: \(\widehat{DAC}=\widehat{BAC}+\widehat{A_1}=\widehat{BAC}+90^o\)

\(\Rightarrow\widehat{BAK}=\widehat{DAC}\left(=\widehat{BAC}+90^o\right)\)(2)

Xét \(\Delta ABK,\Delta ACD\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{BAK}=\widehat{DAC}\) ( theo (2) )

\(AD=AK\) ( theo (1) )

\(\Rightarrow\Delta ABK=\Delta ACD\left(c-g-c\right)\) ( đpcm )

4 tháng 12 2021

\(a,\left\{{}\begin{matrix}AB=AC\\BH=HC\\AH\text{ chung}\end{matrix}\right.\Rightarrow\Delta AHB=\Delta AHC\left(c.c.c\right)\\ \Rightarrow\widehat{AHB}=\widehat{AHC}\\ \text{Mà }\widehat{AHB}+\widehat{AHC}=180^0\\ \Rightarrow\widehat{AHB}=\widehat{AHC}=90^0\\ \Rightarrow AH\perp BC\\ b,\left\{{}\begin{matrix}HM=HA\\\widehat{AHB}=\widehat{MHC}\left(đđ\right)\\BH=HC\end{matrix}\right.\Rightarrow\Delta AHB=\Delta MHC\left(c.g.c\right)\\ \Rightarrow\widehat{HBA}=\widehat{HCM}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}MC\)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: Ta có: ΔABD=ΔACE

nên BD=CE; AD=AE

Xét ΔBCD và ΔCBE có 

BC chung

CD=BE

BD=CE
DO đó: ΔBCD=ΔCBE

c: Xét ΔBHE vuông tại E và ΔCHD vuông tại D có 

BE=CD

\(\widehat{EBH}=\widehat{DCH}\)

Do đó: ΔBHE=ΔCHD

d: Ta có: ΔBHE=ΔCHD

nên HB=HC

Xét ΔABH và ΔACH có 

AB=AC

AH chung

BH=CH

Do đó: ΔABH=ΔACH

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

Do đó: ΔABH=ΔACH

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

12 tháng 2 2022
19 tháng 4 2020

Đây là câu trắc nghiệm nha