giải giùm với ạ cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
"Trổ tay nghề" lại đi bạn, chụp vầy ai nhìn được chắc mắt gắn chức năng làm rõ hình ảnh :D
\(b,\Leftrightarrow\left\{{}\begin{matrix}m-4=1\\m-1\ne3\end{matrix}\right.\Leftrightarrow m=5\\ c,\Leftrightarrow A\left(3;0\right)\in\left(d_2\right)\Leftrightarrow3m-12+m-1=0\Leftrightarrow m=\dfrac{13}{4}\\ d,\text{PT giao Ox và Oy: }\left\{{}\begin{matrix}y=0\Leftrightarrow x=\dfrac{1-m}{m-4}\Leftrightarrow OA=\left|\dfrac{m-1}{m-4}\right|\\x=0\Leftrightarrow y=m-1\Leftrightarrow OB=\left|m-1\right|\end{matrix}\right.\\ \text{Kẻ }OH\perp\left(d\right)\Leftrightarrow\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-4\right)^2}{\left(m-1\right)^2}+\dfrac{1}{\left(m-1\right)^2}\\ \text{Đặt }OH^2=t\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-8m+17}{m^2-2m+1}\\ \Leftrightarrow m^2t-8mt+17t=m^2-2m+1\\ \Leftrightarrow m^2\left(t-1\right)-2m\left(4t-1\right)+17t-1=0\\ \Leftrightarrow\Delta'=\left(4t-1\right)^2-\left(t-1\right)\left(17t-1\right)\ge0\\ \Leftrightarrow-t^2+10t\ge0\Leftrightarrow0\le t\le10\\ \Leftrightarrow OH_{max}=\sqrt{10}\Leftrightarrow\dfrac{m^2-2m+1}{m^2-8m+17}=10\Leftrightarrow...\)
a,
Xét Δ ABH và Δ CBA, có :
\(\widehat{ABH}=\widehat{CAB}\) (góc chung)
\(\widehat{AHB}=\widehat{CAB}=90^o\)
=> Δ ABH ~ Δ CBA (g.g)
=> \(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)
=> \(AB^2=BH.BC\)
Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (Py - ta - go)
=> \(BC^2=15^2+20^2\)
=> BC = 25 (cm)
Ta có : \(AB^2=BH.BC\) (cmt)
=> \(15^2=BH.25\)
=> BH = 9 (cm)
Ta có : BC = BH + CH
=> 25 = 9 + CH
=> CH = 16 (cm)
b,
Xét Δ AMN và Δ ACB, có :
\(\widehat{MAN}=\widehat{CAB}=90^o\)
\(\widehat{MAN}=\widehat{CAB}\) (góc chung)
=> Δ AMN ~ Δ ACB (g.g)
=> \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
=> AM.AB = AN.AC
Ta có : \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
=> \(\dfrac{AB}{AC}=\dfrac{AN}{AM}\)
=> \(\dfrac{AN}{AM}=\dfrac{15}{20}=\dfrac{3}{4}\)
Vậy : ta có kết luận : Δ AMN = \(\dfrac{3}{4}\) Δ ACB
để em viết ra vậy ạ
cho tam giac mnp vuông tại m (mn>mp) có đường cao mk
a) biết mn=20cm, mp=15cm, tính mk và góc mnp (góc làm tròn đến đơn vị phút).
b) vẽ trung tuyến me của tam giác mnp. từ p vẽ đường thẳng vuông góc với me cắt mn tại d. cm tam giác mnp đồng dạng với tam giác mpd, từ đó suy ra mn.md=np.pk
Đề dài thế này sao giải thích nhanh cho e đc
Part 1
1 C
2 B
3 D
4 C
5 B
6 A
Part 2
1 T
2 F
3 F
4 F
V
1 That old house has just been bought
2 If he doesn't take these pills, he won't be better
3 I suggest taking a train
4 Spending the weekend in the countryside is very wonderful
Ta có: \(2021-\left|y-2021\right|=y\)
\(\Leftrightarrow\left|y-2021\right|=2021-y\)
\(\Leftrightarrow\left[{}\begin{matrix}y-2021=2021-y\left(y\ge2021\right)\\y-2021=y-2021\left(y< 2021\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y-2021-2021+y=0\\y-2021-y+2021=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2y=4042\\0y=0\left(luônđúng\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2021\left(nhận\right)\\0y=0\left(luônđúng\right)\end{matrix}\right.\)
Vậy: \(y\le2021\)
Bài `13`
\(a,\sqrt{27}+\sqrt{48}-\sqrt{108}-\sqrt{12}\\ =\sqrt{9\cdot3}+\sqrt{16\cdot3}-\sqrt{36\cdot3}-\sqrt{4\cdot3}\\ =3\sqrt{3}+4\sqrt{3}-6\sqrt{3}-2\sqrt{3}\\ =\left(3+4-6-2\right)\sqrt{3}\\ =-\sqrt{3}\\ b,\left(\sqrt{28}+\sqrt{12}-\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{84}\\ =\left(\sqrt{4\cdot7}+\sqrt{4\cdot3}-\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{4\cdot21}\\ =\left(2\sqrt{7}+2\sqrt{3}-\sqrt{7}\right)\cdot\sqrt{7}+2\sqrt{21}\\ =2\cdot7+2\sqrt{21}-7+2\sqrt{21}\\ =14+2\sqrt{21}-7+2\sqrt{21}\\ =7+4\sqrt{21}\)
Thời gian rơi của quả bóng : $t = \sqrt{\dfrac{2h}{g}} = \sqrt{ \dfrac{2.10}{9,8}} =\dfrac{ 10}{7}(s)$
Vận tốc của bóng khi chạm đất là : $v = \sqrt{(gt)^2 + v^2_o} = \sqrt{ (9,8.\dfrac{ 10}{7})^2 + 0^2} = 14(m/s)$