x+1 ) + ( x +3 ) +( x +5 ) + ..... + ( x+59) = 1710
Các bạn giải giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
(x+1)+(x+3)+...+(x+59)=1710
=>(x+x+x+...+x)+(1+3+..+59)=1710
=>30\(\times\)x+900=1710 (30 số x)
=>30\(\times\)x=810
=>x=810:30=27
Vậy x=27
Chúc bạn hok tốt
Bỏ phép tính sang 1 bên, ta lập dãy số:
1; 3; 5;...; 59
Quy luật: Mỗi số hạng liên tiếp sẽ cách nhau 2 đơn vị
⇒ Ta có số số hạng của dãy số cũng như số chữ số x là:
(59 - 1) : 2 + 1 = 30 (số)
Tổng của dãy là: (1 + 59) x 30 : 2 = 900
⇒ Ta lập lại biểu thức trên như sau:
X x 30 + 900 = 1710
X x 30 = 1710 - 900
X x 30 = 810
X = 27
Vậy số cần tìm là: 27
Lần sau ghi cả câu hỏi nhe, HT
\(\dfrac{1}{2022}\) \(\times\) \(\dfrac{2}{5}\) + \(\dfrac{1}{2022}\) \(\times\) \(\dfrac{7}{5}\) - \(\dfrac{1}{2022}\) \(\times\) \(\dfrac{8}{10}\)
= \(\dfrac{1}{2022}\) \(\times\) ( \(\dfrac{2}{5}\) + \(\dfrac{7}{5}\) - \(\dfrac{8}{10}\))
= \(\dfrac{1}{2022}\) \(\times\) ( \(\dfrac{9}{5}\) - \(\dfrac{4}{5}\))
= \(\dfrac{1}{2022}\) \(\times\) \(\dfrac{5}{5}\)
= \(\dfrac{1}{2022}\times1\)
= \(\dfrac{1}{2022}\)
Số số hạng từ 1 đến x là :
(x - 1) : 2 + 1 = \(\frac{x-1}{2}+\frac{2}{2}=\frac{x+1}{2}\)
Trung bình cộng của tổng là :
\(\left(x+1\right):2=\frac{x+1}{2}\)
=> Tổng của chúng là :
1 + 3 + 5 + 7 + ... + x = \(\frac{x+1}{2}\times\frac{x+1}{2}=1600\)
\(\Rightarrow\frac{x+1}{2}\times\frac{x+1}{2}=1600\)
mà 1600 = 40 x 40
=> \(\frac{x+1}{2}=40\)
=> \(\frac{x+1}{2}=\frac{80}{2}\)
=> \(x+1=80\)
=> \(x=79\)
Vậy \(x=79\)
Ta có : 1 + 3 + 5 +... + x =1600
=> (x - 1) : 2 + 1 =1600
=> (x - 1) / 2 = 1599
=> x - 1 = 3198
=> x = 3197
Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi
OK
Vao đi
(x+9)+(x-2)+(x+7)+(x-4)+(x+5)+(x-6)+(x+3)+(x-8)+(x+1)=95
x + 9 + x – 2 + x + 7 + x – 4 + x + 5 + x – 6 + x + 3 + x – 8 + x + 1 = 95
x × 9 + (9 - 8) + (7 - 6) + (5 - 4) + (3 - 2) + 1= 95
x × 9 + 5 = 95
x × 9 = 90
x = 10
\(3\left(x-1\right)-2\left(x+2\right)=3\left(x+2\right)-2x\left(2+3x\right)\)
\(\Rightarrow3\left(x-1\right)-3\left(x+2\right)=2\left(x+2\right)-2x\left(2+3x\right)\)
\(\Rightarrow3\left(x-1-x-2\right)=2\left(x+2\right)-2\left(2x+3x^2\right)\)
\(\Rightarrow3\left(-3\right)=2\left(x+2-2x-3x^2\right)\)
\(\Rightarrow-9=2\left(2-x-3x^2\right)\)
\(\Rightarrow2-x-3x^2=-4,5\)
\(\Rightarrow x-3x^2=6,5\)(hình như sai đề)
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
1/ \(x^3+2=3\sqrt[3]{3x-2}\)
Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ
\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)
Lấy trên - dưới ta được
\(x^3-a^3+3x-3a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)
\(\Leftrightarrow x=a\)
\(\Leftrightarrow x=\sqrt[3]{3x-2}\)
\(\Leftrightarrow x^3-3x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
(x+1)+(x+3)+(x+5)+...+(x+59)=1710
=>(x+x+x+...+x)+(1+3+5+...+59)=1710
(30 số x)
=>30 x x+900=1710
=>30 x x = 810
=>x= 27
Vậy x =27
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+59\right)=1710\)
\(\Rightarrow\left(x+x+x+...+x\right)+\left(1+3+5+...+59\right)=1710\)
\(\Rightarrow x\times30+\left[\left(59+1\right)\times30:2\right]=1710\)
\(\Rightarrow x\times30+900=1710\)
\(\Rightarrow x\times30=810\)
\(\Rightarrow x=27\).