\(\dfrac{x^2}{5.6}\)+\(\dfrac{x^2}{6.7}\)+\(\dfrac{x^2}{7.8}\)+...+\(\dfrac{x^2}{24.25}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.(1/4.5+1/5.6+...+1/9.10).x=9/2
3.(1/4-1/5+1/5-1/6+...+1/9-1/10).x=9/2
3.(1/4-1/10).x=9/2
3.3/20.x=9/2
9/20.x=9/2
x=9/2:9/20
x=10
`@` `\text {Ans}`
`\downarrow`
`a)`
\(A=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}\)
`=`\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
`=`\(\dfrac{1}{3}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-...-\dfrac{1}{9}\)
`=`\(\dfrac{1}{3}-\dfrac{1}{9}\)
`=`\(\dfrac{2}{9}\)
Vậy, \(A=\dfrac{2}{9}\)
`b)`
\(B=\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+...+\dfrac{1}{23\cdot24}+\dfrac{1}{24\cdot25}\)
`=`\(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
`=`\(\dfrac{1}{5}-\left(\dfrac{1}{6}-\dfrac{1}{6}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\dfrac{1}{25}\)
`=`\(\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)
Vậy, \(B=\dfrac{4}{25}\)
`c)`
\(C=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)
`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
`=`\(1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-...-\dfrac{1}{100}\)
`=`\(1-\dfrac{1}{100}=\dfrac{99}{100}\)
Vậy, \(C=\dfrac{99}{100}\)
a)
\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{24.25}\)
\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=\dfrac{1}{5}-\dfrac{1}{25}\)
\(=\dfrac{4}{25}\)
b)
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
a) \(\dfrac{1}{5.6}=\dfrac{1}{5}-\dfrac{1}{6}\)
⇒ \(\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{24.25}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}=\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)b) \(\dfrac{2}{1.3}=1-\dfrac{1}{3}\)
tương tự
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)
A=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1-1/100 A=99/100 B= (1/5.6+1/6/7+...+1/101.102).3 B=(1/5-1/6+1/6-1/7+...+1/101-1/102).3 B=(1/5-1/102).3 B=97/170
1) Tính
a) Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
B = \(\dfrac{1}{3.4}\) - \(\dfrac{1}{4.5}\) - \(\dfrac{1}{5.6}\) - \(\dfrac{1}{6.7}\) - \(\dfrac{1}{7.8}\) - \(\dfrac{1}{8.9}\) - \(\dfrac{1}{9.10}\)
B = \(\dfrac{1}{12}\) - ( \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\) + \(\dfrac{1}{8.9}\) + \(\dfrac{1}{9.10}\))
B = \(\dfrac{1}{12}\) - ( \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{10}\))
B = \(\dfrac{1}{12}\) - ( \(\dfrac{1}{4}\) - \(\dfrac{1}{10}\))
B = \(\dfrac{1}{12}\) - \(\dfrac{3}{20}\)
B = - \(\dfrac{1}{15}\)
B = \(\dfrac{2}{3.4}+\dfrac{2}{4.9}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+\dfrac{2}{7.8}\)
= \(2.\left(\dfrac{1}{3.4}+\dfrac{1}{4.9}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\right)\)
= \(2.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\right)\)
= \(2.\left(\dfrac{1}{3}-\dfrac{1}{9}-\dfrac{1}{8}\right)\)
= \(2.\dfrac{7}{72}\)
= \(\dfrac{7}{36}\)
1/ \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right).........\left(1-\dfrac{1}{100}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right).........\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}...............\dfrac{99}{100}\)
\(=\dfrac{1}{100}\)
2/ \(\dfrac{1}{5.6}+\dfrac{1}{6.7}+.........+\dfrac{1}{99.100}\)
\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+........+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{5}-\dfrac{1}{100}\)
\(=\dfrac{19}{100}\)
1. \(\left(1-\dfrac{1}{2}\right)\) \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\) \(...\left(1-\dfrac{1}{99}\right)\left(1-\dfrac{1}{100}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right)\left(\dfrac{4}{4}-\dfrac{1}{4}\right)...\left(\dfrac{99}{99}-\dfrac{1}{99}\right)\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{98}{99}.\dfrac{99}{100}\)
\(=\dfrac{1}{100}\)
2. \(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{5}-\dfrac{1}{100}\)
\(=\dfrac{20}{100}\) \(-\dfrac{1}{100}\)
\(=\dfrac{19}{100}\)
đặt \(M=\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}\)
ta có:
\(M=\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}\)
\(\Leftrightarrow M=\dfrac{3+4}{3.4}-\dfrac{4+5}{4.5}+\dfrac{5+6}{5.6}-\dfrac{6+7}{6.7}+\dfrac{7+8}{7.8}-\dfrac{8+9}{8.9}+\dfrac{9+10}{9.10}\) \(\Leftrightarrow M=\dfrac{3}{3.4}+\dfrac{4}{3.4}-\dfrac{4}{4.5}-\dfrac{5}{4.5}+\dfrac{5}{5.6}+\dfrac{6}{5.6}-\dfrac{6}{6.7}-\dfrac{7}{6.7}+\dfrac{7}{7.8}+\dfrac{8}{7.8}-\dfrac{8}{8.9}-\dfrac{9}{8.9}+\dfrac{9}{9.10}+\dfrac{10}{9.10}\) \(\Rightarrow M=\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{6}+\dfrac{1}{8}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{8}+\dfrac{1}{10}+\dfrac{1}{9}\) \(\Rightarrow M=\dfrac{1}{3}+\dfrac{1}{10}\)
\(\Rightarrow M=\dfrac{10}{30}+\dfrac{3}{30}\)
\(\Rightarrow M=\dfrac{13}{30}\)
vậy M = \(\dfrac{13}{30}\)
vậy \(\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}=\dfrac{13}{30}\)
\(\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}=\dfrac{3+4}{3.4}-\dfrac{4+5}{4.5}+\dfrac{5+6}{5.6}-\dfrac{6+7}{6.7}+\dfrac{7+8}{7.8}-\dfrac{8+9}{8.9}+\dfrac{9+10}{9.10}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{7}{30}\)
Ta có:
\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
Ta có : \(\dfrac{x^2}{5.6}\text{=}\dfrac{x^2}{5}-\dfrac{x^2}{6}\)
\(\dfrac{x^2}{6.7}\text{=}\dfrac{x^2}{6}-\dfrac{x^2}{7}\)
\(...\)
\(\dfrac{x^2}{24.25}\text{=}\dfrac{x^2}{24}-\dfrac{x^2}{25}\)
\(\Rightarrow\) biểu thức chỉ còn :
\(\dfrac{x^2}{5}-\dfrac{x^2}{25}\text{=}\dfrac{5x^2-x^2}{25}\text{=}\dfrac{4x^2}{25}\)