K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

n=2001

5 tháng 11 2021

C

5 tháng 11 2021

A

20 tháng 7 2021

A=3+32+33+...+3100

3A=32+33+...+3101

3A-A=(32+33+...+3101)-(3+32+33+...+3100)

2A=3101-3

2A+3=3101

20 tháng 7 2021

\(A=3+3^2+3^3+...+3^{100}\) 

\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\) 

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\) 

\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\) 

Theo đề bài ta có  2A + 3 = 3n ( \(n\in N\) )

\(\Rightarrow2A+3=3^{101}-3+3=3^n\) 

\(\Rightarrow2A+3=3^{101}=3^n\)  

\(\Rightarrow3^{101}=3^n\) 

\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)

Vậy n = 101 

 

26 tháng 5 2018

Đáp án cần chọn là: C

24 tháng 12 2021

C bạn nhé n bằng  101

22 tháng 11 2018

Ta có:  A = 3 + 3 2 + 3 3 + . . . + 3 100

=>  3 A = 3 2 + 3 3 + 3 4 + . . . + 3 101

=>  3 A - A = ( 3 2 + 3 3 + 3 4 + . . . + 3 101 ) - ( 3 + 3 2 + 3 3 + . . . + 3 100 )

=>  2 A = 3 2 + 3 3 + 3 4 + . . . + 3 101 - 3 - 3 2 - 3 3 - . . . - 3 100

2 A = 3 101 - 3 <=>  2 A + 3 = 3 101 , mà  2 A + 3 = 3 n

=> n = 101

13 tháng 8 2021

A=3+32+33+...+399

3A=32+33+...+3100

3A-A=(32+33+...+3100)-(3+32+33+...+399)

2A=3100-3

2A+3=3100

⇒n=100

13 tháng 8 2021

Đây nè bạn, chúc bạn học tốt :))
A = 3 + 3+ 33+ ... + 399
3A = 3. (3 + 3+ 33+ ... + 399)
3A \(=3^2+3^3+3^4+...+3^{100}\)
3A \(=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+...+3^{99}\right)\)
2A\(=3^{100}-3\)
Vậy, sau khi tìm đc 2A, ta tìm stn n nha:
2A + 3 = 3n
\(=3^{100}-3+3=3^n\)
\(3^{100}=3^n\)(Vì -3 +3 = 0)
Vậy n = 100

5 tháng 7 2023

\(A=3+3^2+3^3+...+3^{2015}\)

\(\Rightarrow3A=3^2+3^3+...+3^{2015}+3^{2016}\)

\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{2016}\right)-\left(3+3^2+3^3+...+3^{2015}\right)\)

\(\Rightarrow2A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2016}-3\right)\)

\(\Rightarrow2A=3^{2016}-3\)

\(\Rightarrow A=\dfrac{3^{2016}-3}{2}\)

Ta có: \(2A+3=3^n\)

\(\Rightarrow2\cdot\dfrac{3^{2016}-3}{2}+3=3^n\)

\(\Rightarrow3^{2016}-3+3=3^n\)

\(\Rightarrow3^{2016}=3^n\)

\(\Rightarrow n=2016\)

2 tháng 11 2023

a,     A = 1 + 3 + 32 + 33 + ... + 32000

    3.A =  3 + 32 + 33+ 33+... + 32001

    3A - A = 3 + 32 + 33 + ... + 32001 - (1 + 3 + 32 + 33 + ... + 32000)

     2A    = 3 + 32 + 33 + ... + 32001 -  1 - 3 - 32 - 33 - ... - 32000

     2A   = 32001 - 1 

       A   = \(\dfrac{3^{2001}-1}{2}\)

       

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

Lời giải:
$T=3-3^2+3^3-3^4+....-3^{2000}$

$3T=3^2-3^3+3^4-3^5+...-3^{2001}$

$\Rightarrow T+3T=3-3^{2001}$

$\Rightarrow 4T=3-3^{2001}$

$\Rightarrow T=\frac{3-3^{2001}}{4}$

27 tháng 9 2021

Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12

Mà đoạn 2A sai nhé bạn, sửa lại:

2A = 3101−13101−1 2A=-10001

A=-10001/2

A=-5000,5

Vậy A=-5000,5

17 tháng 10 2021

mn mn ơiii

17 tháng 10 2021

helllppppppppp