K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2021

Giup mk vs

a) Xét tam giác ABD và tam giác EBD có

BAD=BED(=90 ĐỘ)

ABD=EBD ( BD là tia pg của ABC)

BD cạnh chug

Do đó t/giác ABD= t/ giác EBD(chgn)

b) Vì t/giác ABC vuông ở A nên

suy ra AB^2+AC^2=BC^2 ( đl PY TA GO)

          AB^2+12^2=15^2

        AB^2+144=225

        AB^2=81

         AB^2=9^2

         AB=9 cm

Mà AB=BE( t/giác ABD=t/giác EBD)

Do đó BE=9 cm

( sr bạn nhé í c mình chx nghĩ rabucminh☹)

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAE cân tại B

mà BM là phân giác

nên BM vuông góc AE tại M và M là trung điểm của AE

12 tháng 3 2021

Xét tam giác ABD và tam giác EBD có 

góc BAD = góc BED = 90 độ

BD chung

góc ABD = góc EBD (BD là tia phân giác góc ABC)

=> tam giác ABD = tam giác EBD (ch-gn)

b) Gọi H là giao điểm của BD và AE

Ta có tam giác ABD = tam giác EBD

=> AB = BE

Xét tam giác ABH và tam giác EBH có 

AB = BE

góc ABH = góc EBH

BH chung

=> tam giác ABH = tam giác EBH (c.g.c)

=> góc AHB = góc EHB (2 góc tương ứng) và AH = HE

AH = HE => H là trung điểm của AE

Góc AHB = góc AHE mà AHB + AHE = 180 độ 

=> góc AHB = góc EHB = 90 độ => BH vuông góc với AE hay BD vuông góc với AE

Ta có BD vuông góc với AE tại H, H là trung điểm của AE => BD là đường trung trực của AE

chúc e học tốt

15 tháng 3 2021

Cảm ơn chị ạ !

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

b: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

c: ta có: ΔABD=ΔEBD

nên BA=BE và DA=DE

=>BD là đường trung trực của AE

hay BD\(\perp\)AE

21 tháng 7 2020

-.- LM XOG LỠ PẤM HỦY T~T

A B C D E M N G 1 2

A)THEO ĐỊNH LÝ PYTAGO XÉT \(\Delta ABC\)VUÔNG TẠI A

\(\Rightarrow BC^2=AB^2+AC^2\)

\(\Rightarrow10^2=6^2+AC^2\)

\(\Rightarrow100=36+AC^2\)

\(\Rightarrow AC^2=64\)

\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)

b) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)

\(\widehat{BAD}=\widehat{BED}=90^o\)

\(\widehat{B_1}=\widehat{B_2}\left(GT\right)\)

\(BD\)LÀ CẠNH CHUNG

=>\(\Delta ABD\)=\(\Delta EBD\)(CH-GN)

=>\(AB=EB\)

=>\(\Delta ABE\)CÂN TẠI B

C) TRONG\(\Delta ABE\)CÓ BM LÀ PHÂN GIÁC

=> BM VỪA LÀ PHÂN GIÁC VỪA LÀ TRUNG TUYẾN

=> AM=ME

VÌ AM=ME (CMT)=> CM LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta AEC\)

MÀ \(CG=2GM\)

=> G LÀ TRỌNG TÂM CỦA \(\Delta AEC\)

CÓ EN=NC (GT) =>AN LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta AEC\)

MÀ G LÀ TRỌNG TÂM CỦA \(\Delta AEC\)

=> G NẰM TRÊN ĐƯỜNG TRUNG TUYẾN  AN

=> BA ĐIỂM A,G,N THẲNG HÀNG

16 tháng 12 2023

a) Ta có:

- Góc ABD là góc giữa hai phân giác của góc ABC, nên ABD = CBD.

- Góc EBD là góc giữa phân giác của góc ABC và đường thẳng DE, nên EBD = CBD.

Vậy tam giác ABD = tam giác EBD.

 

b) Ta có:

- Góc ABD = góc EBD (do chứng minh ở câu a).

- Góc ADB = góc EDB (do cùng là góc vuông).

- Vậy tam giác ABD = tam giác EBD (do hai góc bằng nhau và góc giữa hai cạnh bằng nhau).

- Do đó, BD vuông góc với AE.

- Ta có AE cắt BD tại I, vậy I là trung điểm của AE.

 

c) Ta có:

- Tia Cx vuông góc với tia BD tại H.

- Trên tia đối của tia AB, lấy điểm F sao cho AF = EC.

- Ta cần chứng minh 3 điểm C, H, F thẳng hàng và AE // FC.

- Vì AF = EC và tam giác ABD = tam giác EBD (do chứng minh ở câu a), nên tam giác AFB = tam giác EFC (do hai cạnh bằng nhau và góc giữa hai cạnh bằng nhau).

- Vậy 3 điểm C, H, F thẳng hàng và AE // FC.

16 tháng 12 2023

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED

=>BA=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

Ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm I của AE

c: Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF

Ta có: BD\(\perp\)AE

AE//CF

Do đó: BD\(\perp\)CF

mà BD\(\perp\)CH

và CH,CF có điểm chung là C

nên C,H,F thẳng hàng

9 tháng 5 2021

Để mình làm cho

xét tam giác ABD và tam giác EBD có

BD chung 

ABD=EBD( vì BD là phân giác )

BAD=BED=90 độ

suy ra tam giác ABD=tam giác EBD ( cạnh huyền - góc nhọn)

vậy tam giác ABD = tam giác EBD

b vì tam giác ABD =tam giác EBD ( cm câu a)

suy ra AB = EB ( 2 cạnh tương ứng)

suy ra tam giác ABE cân tại b

mà góc B = 60 độ

suy ra tam giác ABE đều

Vậy tam giác ABE đều

c từ từ mình đang nghĩ

26 tháng 3 2022

Hỏi đáp Toán
 a) 

ΔABD và ΔEBD có:
BA = BE (gt)
B1^=B2^ (BD là tia phân giác góc B)
BD là cạnh chung
⇒ΔABD=ΔEBD (c.g.c)

 

 BAD^=BED^ (hai góc tương ứng)
mà BAD^ =900
BED^ =900
 DE  BE

b) ΔABI và ΔEBI có:
BA = BE (gt)