K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2021

h vẽ như sau:

Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

 

16 tháng 10 2023

loading...  loading...  loading...  

14 tháng 3 2021

ai đó làm giúp với

 

a: góc AEB=góc ADB=90 độ

=>ABDE nội tiếp

b: góc CBK=1/2*180=90 độ

Xet ΔCBK vuông tại B và ΔCFA vuông tại F có

góc BCK=góc FCA

=>ΔCBK đồng dạng vơi ΔCFA

=>CB/CF=CK/CA

=>CB*CA=CF*CK

7 tháng 5 2022

a/

Ta có D và E cùng nhìn HC dưới 1 góc vuông nên D và E thuộc đường tròn đường kính HC => CDHE là tứ giác nội tiếp

Ta có E và F cùng nhìn BC dưới 1 góc vuông nên E và F thuộc đường tròn đường kính BC => BCEF là tứ giác nội tiếp

b/ Xét tg MEB và tg MCF có

\(\widehat{EMC}\) chung

\(\widehat{MEB}=\widehat{MCF}\) (góc nội tiếp cùng chắn cung BF)

=> tg MEB đồng dạng với tg MCF (g.g.g)

\(\Rightarrow\dfrac{ME}{MC}=\dfrac{MB}{MF}\Rightarrow MB.MC=ME.MF\)

 

 

 

a: Sửa đề: BFEC

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

góc BAK=góc BAD+góc DAK

góc DAC=góc DAK+góc CAK

mà góc BAD=góc CAK

nên góc BAK=góc DAC

Xét ΔABK vuông tại B và ΔADC vuông tại D có

góc BAK=góc DAC

=>ΔABK đồng dạng với ΔADC

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

a) Tứ giác $AFHE$ có tổng 2 góc đối nhau  $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.

b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)

Xét tam giác $ABD$ và $AKC$ có:

$\widehat{ADB}=\widehat{ACK}=90^0$

$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)

$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)

$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$

$\Rightarrow AB.AC=AD.AK$ (đpcm)

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Hình vẽ:

undefined

a: Xét tứ giác CGFB có \(\widehat{CGB}=\widehat{CFB}=90^0\)

nên CGFB là tứ giác nội tiếp

b: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC\(\perp\)CD

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>AB\(\perp\)BD

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{ADC}\)

Xét ΔACD vuông tại C và ΔCFB vuông tại F có

\(\widehat{ADC}=\widehat{CBF}\)

Do đó: ΔACD~ΔCFB

c: ta có: BH\(\perp\)AC

CD\(\perp\)AC

Do đó: BH//CD

Ta có: CH\(\perp\)AB

BD\(\perp\)BA

Do đó: CH//BD

Ta có: ΔOBC cân tại O

mà OI là đường cao

nên I là trung điểm của BC

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

d: ta có: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

mà I là trung điểm của BC

nên I là trung điểm của HD

=>H,I,D thẳng hàng