Cho tam giác ABC có AB lớn hơn AC phân giác AD. C/minh DC >DB, gọi I thuộc AD, c/minhIC>IB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1)
A )Ta có tam giác ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\)
Và AB = AC
Xét hai tam giác vuông BCK và CBH ta có :
BC chung
\(\widehat{KBC}=\widehat{BCH}\)
=>BCK = CBH (cạnh huyền - góc nhọn )
=>BH = CK (đpcm)
B) ta có BCK = CBH
=> \(\widehat{HBC}=\widehat{KCB}\)
=> \(\widehat{ABH}=\widehat{ACK}\)
=> tam giác OBC cân tại O
=> BO = CO
Xét tam giác ABO và tam giác ACO
AB = AC
BO = CO (cmt)
\(\widehat{ABH}=\widehat{ACK}\)
=> ABO=ACO (c-g-c)
=> \(\widehat{BAO}=\widehat{CAO}\)
=> AO là phân giác góc ABC (đpcm)
C) ta có
AI là phân giác góc ABC
Mà tam giác ABC cân tại A
=> AI vuông góc với cạnh BC (đpcm)
a) Xét tam giác ABD và tam giác AED có
AB=AE
BAD=DAE( vì AD là phân giác của BAC)
Cạnh AD chung
=> tam giác ABD= tam giác AED( c.g.c)
=>DB=DE
b) Có tam giác ABD= tam giác AED
=> ABD=AED
=>DBK=DEC( kề bù với 2 góc bằng nhau)
Xét tam giác BDK và tam giác EDC
BD=DE
BDK=EDC ( 2 góc đối đỉnh)
DBK=DEC
=> tam giác BDK= tam giác EDC ( g.c.g)
c) Tam giác BDK=tam giác EDC
=>DBK=DEC
Có DBK>C( DBK là góc ngoài tam giác ABC)
=>DEC>C
=>DC>DE
Mà DE=DE
=>DC>DB
Vì AB > AC nên trên AB lấy điểm E sao cho AC = AE.Xét tam giác ACD và tam giác AED có:AC =AE;góc A1 = góc A2;AD là cạnh chung .Suy ra tam giác ACD = tam giác AED ( c.g.c) suy ra CD =ED và góc ACD = góc AED.Mà góc AED + góc BED = 180 độ ( kề bù)