X² - (3m+1)X+2m² +3m-2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
- Với \(m=-1\) BPT có nghiệm (đúng với mọi x)
- Với \(m\ne-1\) BPT có nghiệm khi:
\(\left[{}\begin{matrix}m+1< 0\\\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m+1\right)^2-\left(m+1\right)\left(3m-3\right)>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -1\\\left\{{}\begin{matrix}m>-1\\\left(m+1\right)\left(4-2m\right)>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -1\\\left\{{}\begin{matrix}m>-1\\-1< m< 2\end{matrix}\right.\end{matrix}\right.\)
Kết hợp lại ta được: \(m< 2\)
b.
Do \(a=1>0\) nên BPT có nghiệm với mọi m
c.
- Với \(m=1\) BPT có nghiệm
- Với \(m\ne1\) BPT có nghiệm khi:
\(\left[{}\begin{matrix}m-1< 0\\\left\{{}\begin{matrix}m-1>0\\\Delta'=\left(m+1\right)^2-\left(m-1\right)\left(3m-6\right)\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< 1\\\left\{{}\begin{matrix}m>1\\-2m^2+11m-5\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< 1\\\left\{{}\begin{matrix}m>1\\\dfrac{1}{2}\le m\le5\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< 1\\1< m\le5\end{matrix}\right.\)
Kết hợp lại ta được: \(m\le5\)
a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)
\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)
\(\Leftrightarrow-1< m< \dfrac{5}{2}\)
b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Phương trình đã cho có nghiệm duy nhất
TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)
Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)
\(\Leftrightarrow m^2-3m+2>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)
Vậy \(m>2\) hoặc \(m< 1\)
Ta có: △= (3m+1)2 - 4 (2m2 + 3m - 2)
= m2 - 6m + 9
Để pt có 2 nghiệm phân biệt: △ > 0
=> m2 - 6m +9 > 0 <=> x ≠ 3
\(x^2-\left(3m+1\right)x+2m^2+3m-2=0\)
Ta có \(\Delta=\left(3m+1\right)^2-4.\left(2m^2+3m-2\right)\)
\(=9m^2+6m+1-8m^2-12m+8\)
\(=m^2-6m+9=\left(m-3\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\left(m-3\right)^2>0\)
hay m khác 3
Vậy m khác 3 thì pt có 2 nghiệm phân biệt
\(x^2-2mx-4m+1=0\left(1\right)\)
\(x^2+\left(3m+1\right)x+2m+1=0\left(2\right)\)
Gọi x0 là nghiệm chung của hai phương trình trên. Do đó ta có:
\(\left\{{}\begin{matrix}x_0^2-2mx_0-4m+1=0\left(3\right)\\x_0^2+\left(3m+1\right)x_0+2m+1=0\end{matrix}\right.\)
\(\Rightarrow\left(3m+1\right)x_0+2m+1-\left(-2mx_0-4m+1\right)=0\)
\(\Rightarrow\left(5m+1\right)x_0+6m=0\)
\(\Rightarrow m\left(5x_0+6\right)+x_0=0\)
\(\Rightarrow m=\dfrac{-x_0}{5x_0+6}\) \(\left(x_0\ne\dfrac{-6}{5}\right)\)
Thay vào (3) ta được:
\(x_0^2-2.\dfrac{-x_0}{5x_0+6}.x_0-4.\dfrac{-x_0}{5x_0+6}+1=0\)
\(\Rightarrow x_0^2+\dfrac{2x_0^2}{5x_0+6}+\dfrac{4x_0}{5x_0+6}+1=0\)
\(\Leftrightarrow x_0^2\left(5x_0+6\right)+2x_0^2+4x_0+5x_0+6=0\)
\(\Leftrightarrow5x_0^3+8x_0^2+9x_0+6=0\)
\(\Leftrightarrow5x_0^3+5x_0^2+3x_0^2+3x_0+6x_0+6=0\)
\(\Leftrightarrow5x_0^2\left(x_0+1\right)+3x_0\left(x_0+1\right)+6\left(x_0+1\right)=0\)
\(\Leftrightarrow\left(x_0+1\right)\left(5x_0^2+3x_0+6\right)=0\)
\(\Leftrightarrow x_0=-1\)
\(\Rightarrow m=\dfrac{-x_0}{5x_0+6}=\dfrac{-\left(-1\right)}{5.\left(-1\right)+6}=\dfrac{1}{6}\)
Xét (1) : Để pt có nghiệm khi
\(\Delta'=m^2-\left(-4m+1\right)=m^2+4m-1\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le-2-\sqrt{5}\\x\ge-2+\sqrt{5}\end{matrix}\right.\)
(2) : Để pt có nghiệm khi \(\Delta=\left(3m+1\right)^2-4\left(2m+1\right)=9m^2+6m+1-8m-4=9m^2-2m-3\ge0\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{1-2\sqrt{7}}{9}\\x\ge\dfrac{1+2\sqrt{7}}{9}\end{matrix}\right.\)
Để 2 pt có nghiệm chung khi \(\left[{}\begin{matrix}x\le-2-\sqrt{5}\\x\ge\dfrac{1+2\sqrt{7}}{9}\end{matrix}\right.\)
câu a
Gọi x0 là nghiệm chung của PT(1) và (2)
\(\Rightarrow\left\{{}\begin{matrix}2x^2_0+\left(3m-1\right)x_0-3=0\left(\times3\right)\\6.x^2_0-\left(2m-1\right)x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x^2_0+3\left(3m-1\right)x_0-9=0\left(1\right)\\6x^2_0-\left(2m-1\right)x_0-1=0\left(2\right)\end{matrix}\right.\) Lấy (1)-(2) ,ta được
PT\(\Leftrightarrow3\left(3m-1\right)-9+\left(2m-1\right)+1\)=0
\(\Leftrightarrow9m-3-9+2m-1+1=0\Leftrightarrow11m-12=0\)
\(\Leftrightarrow m=\dfrac{12}{11}\)
Dù đề yêu cầu cái gì cũng làm cái này trước đã :>
( a = 1; b = - (3m + 1); c = 2m^2 + 3m - 2 )
\(\Delta=b^2-4ac\)
\(=\left[-\left(3m+1\right)\right]^2-4.1.\left(2m^2+3m-2\right)\)
\(=9m^2+6m+1-8m^2-12m+8\)
\(=m^2-6m+9\)
\(=\left(m-3\right)^2\ge0\forall m\)
Vậy pt luôn có 2 nghiệm với mọi m