K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Lời giải:

$2^n+34=2.2^2+3.2^3+....+n.2^n$

$2^{n+1}+68=2.2^3+3.2^4+....+n.2^{n+1}$

Trừ theo vế:

$2^n+34=n.2^{n+1}-(8+2^3+2^4+...+2^n)$

$n.2^{n+1}-2^n-42=2^3+2^4+...+2^n$

$n.2^{n+2}-2^{n+1}-84=2^4+....+2^{n+1}$

Trừ theo vế:

$n.2^{n+1}-2^n-42=2^{n+1}-8$

$2^n(2n-3)=34=17.2$

$\Rightarrow 2^n=2$ và $2n-3=17$ (vô lý)

Vậy không tìm được $n$.

7 tháng 10 2015

A = 2.22 + 3.23 + 4.24 + ... + n.2n 

2.A = 2.2+ 3.2+ 4.2+ ...+ n.2n+1

=> A - 2.A = 2.22 + (3.2- 2.23)  + (4.2- 3.24) + ...+ (n - n + 1).2- n.2n+1

=> A = 2.2+ 2+ 2+ ..+ 2- n.2n+ 1  = 22 + (2+ 2+ ....+ 2n+ 1) - (n+1).2n+1

=> A =  - 22 -  (2+ 2+ ....+ 2n+ 1) + (n+1).2n+1

Tính B = 2+ 2+ ....+ 2n+ 1 => 2.B =  2+ ....+ 2n+ 1 + 2n+2 => 2B - B = 2n+2 - 22 => B = 2n+2 - 22

Vậy A = 22 - 2n+2 + 22 + (n+1).2n+1 = (n+1).2n+1 - 2n+ 2 = 2n+1.(n + 1 - 2) = (n-1).2n+1 = 2(n-1).2n

Theo bài cho  A = 2(n-1).2n = 2n+10 => 2(n - 1) = 210 => n - 1 = 2 = 512 => n = 513

Vậy.............

10 tháng 10 2016

n= 513, tui chỉ biết đáp án nhưng không biết cách làm

16 tháng 7 2023

a, 5n+1 - 5n-1 = 1254.23.3

5n-1.(52 - 1) = 1254.24

5n-1.24         = 1254.24

5n-1             = 1254

5n-1             = (53)4

5n-1            = 512

n - 1           = 12

n                = 12 + 1

n                = 13

b,22n-1 + 22n+2 = 3.211

   22n-1.(1 + 23) = 3.211

  22n-1.9 = 3.211

 22n-1      = 211: 3

22n        = 212 : 3 (xem lại đề bài em nhá)

 

23 tháng 1 2020

Đặt S = 2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n 

<=> S = 2S - S = (2.23 + 3.24 +  4.25 + .... + (n - 1).2n + n. 2n + 1) - (2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n)

                S = (2.23 - 3.23) + (3.24 - 4.24) + (4.25 - 5.25) + .... + [(n - 1).2n - n.2n] + n.2n + 1 - 2.22

                   = -(23 + 24 + 25 + ... + 2n) + n.2n + 1 - 8

Đặt A = 23 + 24 + 25 + ... + 2n

  <=> 2A - A = (24 + 25 + 26 + ... + 2n + 1) - (23 + 24 + 25 + ... + 2n

  <=> A = 2n + 1 - 23 

Khi đó S = - 2n - 1 + 23 + n.2n - 1 - 8

              = 2n - 1.(n - 1) = 2n + 34

         => n - 1 = 2n + 34 : 2n - 1

          => n - 1 = 2n + 34 - n + 1

          => n - 1 = 235

          => n = 235 + 1

23 tháng 1 2020

N=34359738369 nha

13 tháng 7 2023

a) \(5^{n+3}-5^{n+1}=5^{12}.120\Leftrightarrow5^{n+1}.\left(5^2-1\right)=5^{12}.5.24\)

\(\Leftrightarrow24.5^{n+1}=5^{13}.24\Leftrightarrow5^{n+1}=5^{13}\Leftrightarrow n+1=13\Leftrightarrow n=12\)

b) \(2^{n+1}+4.2^n=3.2^7\)

\(\Leftrightarrow2^n\left(2+4\right)=3.2^7\Leftrightarrow6.2^n=3.2^7\Leftrightarrow2^n=2^6\Leftrightarrow n=6\)

c) \(3^{n+2}-3^{n+1}=486\)

\(\Leftrightarrow3^{n+1}.\left(3-1\right)=486\Leftrightarrow2.3^{n+1}=486\Leftrightarrow3^{n+1}=243\)

\(\Leftrightarrow3^n=243:3=81=3^3\Leftrightarrow n=3\)

d) \(3^{2n+3}-3^{2n+2}=2.3^{10}\)

\(\Leftrightarrow3^{2n+2}.\left(3-1\right)=2.3^{10}\)

\(\Leftrightarrow3^{2n+2}.2=2.3^{10}\Leftrightarrow3^{2n+2}=3^{10}\Leftrightarrow2n+2=10\Leftrightarrow2n=8\Leftrightarrow n=4\)

NV
22 tháng 12 2020

Xét khai triển:

\(\left(1+2x\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1.2x+C_{2n+1}^2\left(2x\right)^2+...+C_{2n+1}^{2n+1}\left(2x\right)^{2n+1}\)

Đạo hàm 2 vế:

\(2\left(2n+1\right)\left(1+2x\right)^{2n}=2C_{2n+1}^1+2^2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n+1}C_{2n+1}^{2n+1}x^{2n}\)

\(\Leftrightarrow\left(2n+1\right)\left(1+2x\right)^{2n}=C_{2n+1}^1+2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}x^{2n}\)

Cho \(x=-1\) ta được:

\(2n+1=C_{2n+1}^1-2C_{2n+1}^2+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}\)

\(\Rightarrow2n+1=2019\Rightarrow n=1009\)