Chứng minh rằng : a,1/q=(1/q+1)+(1/q(q+1))
b,a/b=(1/q+1)+(a(q+1)-b/b(q+1))
c,áp dụng:viết phân số 1/3 thành tổng của ba phân số Ai Cập khác nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) )
b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)
c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)
do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm )
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Ta có:
\(\frac{1}{2}< 6\)
\(\frac{1}{3}< 6\)
\(...\)
\(\frac{1}{63}< 6\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{63}< 6\)
\(\Rightarrow A< 6\left(dpcm\right)\)
\(#Jen\)
Trao đổi nếu cần
ta có
a,\(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow a+m< b+m\)
vì \(a+m< b+m\)
nên \(\frac{a+m}{b+m}< 1\)
b,Ta có \(a+b>1\Leftrightarrow a+m>b+m\)
Vì \(a+m>b+m\)
nên \(\frac{a+m}{b+m}>1\)
b
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+..+\frac{1}{70}\)
Ta thấy:
\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)( có 10 phân số \(\frac{1}{20}\)) = \(\frac{1}{20}\).10 = \(\frac{1}{2}\)
\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)(có 10 phân số \(\frac{1}{30}\)) = \(\frac{1}{30}\).10 = \(\frac{1}{3}\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)( có 10 phân số \(\frac{1}{40}\)) = \(\frac{1}{40}\).10 = \(\frac{1}{4}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)( có 10 phân số \(\frac{1}{50}\)) =\(\frac{1}{50}.10=\frac{1}{5}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)( có 10 phân số \(\frac{1}{60}\)) =\(\frac{1}{60}.10=\frac{1}{6}\)
\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}>\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\)( có 10 phân số \(\frac{1}{70}\)) \(=\frac{1}{70}.10=\frac{1}{7}\)
=> A> \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\frac{223}{140}=\frac{699}{420}>\frac{560}{420}=\frac{4}{3}\)
=> A > \(\frac{4}{3}\)
Có : (a-b)^2 >= 0
<=> a^2-2ab+b^2 >= 0
<=> a^2-2ab+b^2+2ab >= 0 + 2ab
<=> a^2+b^2 >= 2ab
Áp dụng bđt trên thì A >= \(2\sqrt{a.1}+2\sqrt{b.1}\) = \(2\sqrt{a}+2\sqrt{b}\)>= \(2\sqrt{2\sqrt{a}.2\sqrt{b}}\)
= \(2\sqrt{4.\sqrt{ab}}\)= \(2\sqrt{4.1}\)= 4
=> ĐPCM
Dấu "=" xảy ra <=> a=b=1
Tk mk nha