cho x, y, z>0 và x+y+z=1. Tìm GTLN của P= x/(x+1) + y/(y+1)+ z/(z+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=x/x+1 + y/y+1 + z/z+1=x+1-1/x+1 + y+1-1/y+1 + z+1-1/z+1
=1 - 1/x+1 + 1 - 1/y+1 + 1 - 1/z+1
=3 - (1/x+1 + 1/y+1 + 1/z+1)
Áp dụng bđt cauchy- schwarz dạng engel:
1/x+1 + 1/y+1 + 1/z+1 = 12/x+1 + 12/y+1 + 12/z+1 >/ (1+1+1)2/x+1+y+1+z+1 >/ 9/4 (do x+y+z=1)
=> P </ 3 - 9/4 = 3/4
maxP=3/4
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)
Đặt a = x + 1 > 0 ; b = y + 1 > 0 ; c = z + 4 > 0
a + b + c = 6
\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)
Theo Bất Đẳng Thức ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}\ge\frac{16}{a+b+c}=\frac{8}{3}\)
\(\Rightarrow A\le\frac{1}{3}\)Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}}\)
Vậy MaxA = 1/3 khi \(\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}\)
P = (x +1 -1)/(x +1) + (y +1 -1)/(y +1) + (z +1 -1)/ (z+1)
= 3 - [ 1/(x+1) + 1/(y +1) + 1/(z +1) ]
Áp dụng BĐT cô si, ta có:
[(x +1) + (y +1) + (z +1)]. [1/(x+1) + 1/(y +1) + 1/(z +1) ] ≥9
=> 1/(x+1) + 1/(y +1) + 1/(z +1) ≥ 9/4 ( do x + y + z =1)
=> P ≤ 3/4
Dấu " =" xảy ra <=> x = y = z = 1/3
Vậy maxP = 3/4
Lưu ý: bạn cần cm BĐT phụ:
Cho x, y, z >0, ta có:
(x +y +z) (1/x +1/y +1/z) ≥ 9
Chứng minh nhanh như sau:
Theo bđt cô si đã biết, ta có: x + y + z ≥ 3∛(xyz) và 1/x +1/y + 1/z ≥ 3∛[1/(xyx)]
⇒(x + y + z)(1/x + 1/y +1/z) ≥ 3∛(xyz) . 3∛[1/(xyx)] =9
Dấu “=” của bđt xảy ra ⇔ x = y = z
\(P=\left(1-\frac{1}{x+1}\right)+...\)
= \(3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Schwarz ta có \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+y+z+3}\)\(=\frac{9}{4}\)
do đó P<= 3-9/4=3/4
dấu = xảy ra <=> x=y=z=1/3
Xét: \(x^4+y^4-xy\left(x^2+y^2\right)=\left(x^2+y^2+xy\right)\left(x-y\right)^2\ge0\)
\(\Rightarrow x^4+y^4\ge xy\left(x^2+y^2\right)\)(*)
Tương tự với (*) ta có: \(\hept{\begin{cases}y^4+z^4\ge yz\left(y^2+z^2\right)\\z^4+x^4\ge zx\left(z^2+x^2\right)\end{cases}}\)
\(\Rightarrow\Sigma_{cyc}\frac{1}{x^4+y^4+z}\le\Sigma_{cyc}\frac{1}{xy\left(x^2+y^2\right)+z.xyz}=\Sigma_{cyc}\frac{1}{xy\left(x^2+y^2+z^2\right)}=\frac{x+y+z}{x^2+y^2+z^2}\)
Ta có:\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) và \(x+y+z\ge3\sqrt[3]{xyz}=3\)
\(\Rightarrow\Sigma_{cyc}\frac{1}{x^4+y^4+z}\le\frac{x+y+z}{x^2+y^2+z^2}\le\frac{1}{\frac{1}{3}\left(x+y+z\right)}\le1\)
Dấu "=" xảy ra khi x=y=z=1