giải các bất phương trình sau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x=\dfrac{6^2}{3}=12\left(cm\right)\)
\(y=\sqrt{6^2+12^2}=6\sqrt{5}\)
b: \(x=\sqrt{4\cdot9}=6\)
c: \(x=5\cdot\tan40^0\simeq4,2\left(cm\right)\)
\(\left|8-x\right|=x^2-x\)
<=> \(\orbr{\begin{cases}8-x=x^2-x\\8-x=x-x^2\end{cases}}\)
<=> \(\orbr{\begin{cases}8=x^2\\8=2x-x^2\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\pm2\sqrt{2}\\x\left(2-x\right)=8\end{cases}}\)
Tới đây bạn tự giải nhé,.
ta có: |8-x|=x2-x
=> \(\orbr{\begin{cases}8-x=x^2-x\\8-x=x-x^2\end{cases}}\)
(+) 8-x=x2-x
<=> x2=8 <=> x=\(\sqrt{8}\)
(+) 8-x=x-x2
<=> x2-2x+8=0
<=> x2-2x+1+7 =0
<=> (x-1)2+7=0
mà (x-1)2\(\ge\) 0 \(\forall\)x nên (x-1)2+7>0
=> ptvn
vậy phương trình đã cho có 1 nghiệm là x=\(\sqrt{8}\)
a. \(ZnCl_2+Zn^{2+}+2Cl^-\)
b. \(FeSO_4\rightarrow Fe^{2+}+SO_4^{2-}\)
c. \(Zn\left(NO_3\right)_2\rightarrow Zn^{2+}+2NO_3^-\)
d. \(MgCl_2\rightarrow Mg^{2+}+2Cl^-\)
Câu 1:
a)2x-3=5
\(\leftrightarrow\)2x=5+3
\(\leftrightarrow\)2x=8
\(\leftrightarrow\)x=4
Vậy pt có tập nghiệm S={4}
b)(2x+1)(x-3)=0
\(\leftrightarrow\) 2x+1=0
Hoặc x-3=0
\(\leftrightarrow\)x=-1/2
x=3
Vậy pt có tập nghiệm S={-1/2;3}
d)3x-4=11
\(\leftrightarrow\)3x=11+4
\(\leftrightarrow\)3x=15
\(\leftrightarrow\)x=5
Vậy pt có tập nghiệm S={5}
e)(2x-3)(x+2)=0
\(\leftrightarrow\)2x-3=0
Hoặc x+2=0
\(\leftrightarrow\)x=3/2
hoặc x=-2
Vậy pt có tập nghiệm S={3/2;-2}
Câu 2:
a)2x-3<15
\(\leftrightarrow\)2x<15+3
\(\leftrightarrow\)2x<18
\(\leftrightarrow\)x<9
Vật bpt có tập nghiệm S={x|x<9}
c)5x-2<18
\(\leftrightarrow\)5x<20
\(\leftrightarrow\)x<4
Vậy bpt có tập nghiệm S={x|x<4}
Mấy bài phân số nhác gõ quá~
`2x+5y=11(1)`
`2x-3y=0(2)`
Lấy (1) trừ (2)
`=>8y=11`
`<=>y=11/8`
`<=>x=(3y)/2=33/16`
a) Ta có: \(\left\{{}\begin{matrix}2x+5y=11\\2x-3y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=11\\2x-3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{8}\\2x=3y=3\cdot\dfrac{11}{8}=\dfrac{33}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}4x+3y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+3y=6\\4x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2=4\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=6\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(3;-2)
b: =>|x+2|+|2x-1|<x+1(1)
Trường hợp 1: x<-2
(1) sẽ là -x-2-2x+1<x+1
=>-3x-1<x+1
=>-4x<2
hay x>-1/2(loại)
Trường hợp 2: -2<=x<1/2
(1) sẽ là x+2+1-2x<x+1
=>-x+3<x+1
=>-2x<-2
hay x>1(loại)
Trường hợp 3: x>=1/2
(1) sẽ là x+2+2x-1<x+1
=>3x+1<x+1
=>x<0(loại)
Vậy: BPT vô nghiệm
b: =>|x+2|+|2x-1|<x+1(1)
Trường hợp 1: x<-2
(1) sẽ là -x-2-2x+1<x+1
=>-3x-1<x+1
=>-4x<2
hay x>-1/2(loại)
Trường hợp 2: -2<=x<1/2
(1) sẽ là x+2+1-2x<x+1
=>-x+3<x+1
=>-2x<-2
hay x>1(loại)
Trường hợp 3: x>=1/2
(1) sẽ là x+2+2x-1<x+1
=>3x+1<x+1
=>x<0(loại)
Vậy: BPT vô nghiệm
giống Nguyễn Lê Phước Thịnh nhé
ĐK: \(x\ge0\)
Dễ thấy \(1-\sqrt{2\left(x^2-x+1\right)}\le1-\sqrt{2}< 0\)
Khi đó bất phương trình tương đương:
\(x-\sqrt{x}\le1-\sqrt{2\left(x^2-x+1\right)}\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(x+\dfrac{1}{x}-1\right)}\le0\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2}\le0\)
\(\Leftrightarrow t-1+\sqrt{2t^2+2}\le0\)
a: BHCG là hbh
=>BH//CG và BG//CH
=>BG vuông góc BA và CG vuông góc CA
góc ABG+góc ACG=90+90=180 độ
=>ABGC nội tiếp
góc AMG=góc ABG=góc ACG=90 độ
=>A,B,M,G,C cùng nằm trên đường tròn đường kính AG
=>ABMG nội tiếp
b: Xét ΔABD vuông tại D và ΔACG vuông tại C có
góc ABD=góc AGC
=>ΔABD đồng dạng với ΔACG
Bài 1 :
\(CT:C_nH_{2n-6}\left(n\ge6\right)\)
\(\%C=\dfrac{12n}{14n-6}\cdot100\%=90.57\%\)
\(\Rightarrow n=8\)
\(CT:C_8H_{10}\)
Bài 2 :
\(n_{CO_2}=\dfrac{17.6}{44}=0.4\left(mol\right)\)
\(CT:C_nH_{2n+1}OH\)
\(\Rightarrow n_{ancol}=\dfrac{n_{CO_2}}{n}=\dfrac{0.4}{n}\left(mol\right)\)
\(M_A=\dfrac{7.4}{\dfrac{0.4}{n}}=\dfrac{37}{2}n\left(\dfrac{g}{mol}\right)\)
\(\Rightarrow14n+18=\dfrac{37}{2}n\)
\(\Rightarrow n=4\)
\(CT:C_4H_9OH\)
\(CTCT:\)
\(B1:\)
\(CH_3-CH_2-CH_2-CH_2-OH:butan-1-ol\)
\(B2:\)
\(CH_3-CH_2-CH\left(CH_3\right)-OH:butan-2-ol\)
\(B2:\)
\(CH_3-CH\left(CH_3\right)-CH_2-OH:2-metylpropan-1-ol\)
\(B3:\)
\(C\left(CH_3\right)_3-OH:2-metylpropan-2-ol\)
Lỗi
a: =>x^2+5x-6>=0
=>(x+6)(x-1)>=0
=>x>=1 hoặc x<=-6
b: -5x^2+12x+6>0
=>5x^2-12x-6<0
=>\(\dfrac{6-\sqrt{66}}{5}< x< \dfrac{6+\sqrt{66}}{5}\)
c: =>7x^2-8x-12>=0
=>7x^2-14x+6x-12>=0
=>(x-2)(7x+6)>=0
=>x>=2 hoặc x<=-6/7
d: =>(x+2)(x+3)>=0
=>x>=-2 hoặc x<=-3