K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 2 2023

Lời giải:

Xét $f(x)=x^3+ax+b$ 

Vì $x^2+4x+3=(x+1)(x+3)$ nên để $f(x)\vdots x^2+4x+3$ thì $f(x)\vdots x+1$ và $f(x)\vdots x+3$

Theo định lý Bê-du thì điều trên xảy ra khi:

$f(-1)=f(-3)=0$

$\Leftrightarrow (-1)^3+a(-1)+b=(-3)^3+a(-3)+b=0$

$\Leftrightarrow -a+b=1$ và $-3a+b=27$

$\Rightarrow a=-13; b=-12$

3 tháng 2 2023

x2+4x+3=(x+1)(x+3)

��3+��−24=(�+1)(�+3).�(�)ax3+bx−24=(x+1)(x+3).Q(x)(*)

Với x=-1 (*) => -a-b -24 =0 hay a+b=-24  (1)

Với x =-3 (*) => -27a-3b-24=0 hay 9a+b=-8  (2)

Từ (1) và (2) => a=2 ;b=-26

25 tháng 8 2017

a) x3 + 127127 = x3  + (1313)3 = (x + 1313)(x2 – x . 1313+ (1313)2)

=(x + 1313)(x2 – 1313x + 1919)

b) (a + b)3 – (a - b)3    

= [(a + b) – (a – b)][(a + b)2 + (a + b) . (a – b) + (a – b)2]

= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2)

= 2b . (3a3 + b2)

c) (a + b)3 + (a – b)3 = [(a + b) + (a – b)][(a + b)2 – (a + b)(a – b) + (a – b)2]

= (a + b + a – b)(a2 + 2ab + b2 – a2  +b+ a2 – 2ab + b2]

= 2a . (a2 + 3b2)

d) 8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3 . (2x)2 . y  +3 . 2x . y + y3 = (2x + y)3

e) - x+ 9x2 – 27x + 27 = 27 – 27x + 9x2 – x3 = 33 – 3 . 32 . x + 3 . 3 . x2 – x3 = (3 – x)3

7 tháng 11 2019

Đa thức \(\left(x-1\right)\left(x+2\right)\)có nghiệm \(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy 1 và -2 là hai nghiệm của đa thức (x-1)(x+2)

Để đa thức \(f\left(x\right)=2x^4+ax^3+3x^2+4x+b\)chia hết cho (x-1)(x+2) thì  1 và -2 là cũng hai nghiệm của đa thức 

\(f\left(x\right)=2x^4+ax^3+3x^2+4x+b\)

Nếu x = -1 thì \(f\left(-1\right)=2-a+3-4+b=0\)

\(\Leftrightarrow a-b=1\)(1)

Nếu x = 2 thì \(f\left(2\right)=32+8a+12+8+b=0\)

\(\Leftrightarrow52+8a+b=0\)

\(\Leftrightarrow8a+b=-52\)(2)

Lấy (1) + (2), ta được: \(9a=-51\Leftrightarrow a=\frac{-17}{3}\)

\(\Rightarrow b=\frac{-17}{3}-1=\frac{-20}{3}\)

Vậy \(a=\frac{-17}{3};b=\frac{-20}{3}\)

1: a=2

b: a=-6

c: \(\Leftrightarrow2x^3-6x^2+4x+x^2-3x+2+a-2⋮x^2-3x+2\)

=>a-2=0

=>a=2

d: \(\dfrac{5x^3+4x^2-6x-a}{5x-1}=\dfrac{5x^3-x^2+5x^2-x-5x+1-a-1}{5x-1}\)

\(=x^2+x-1+\dfrac{-a-1}{5x-1}\)

Để dư bằng -3 thì -a-1=-3

=>a+1=3

=>a=2